About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Theoretical studies of orbital current and their conversion mechnism for leveraging spin-orbit torques based devices performances

Theoretical studies of orbital current and their conversion mechnism for leveraging spin-orbit torques based devices performances

Condensed matter physics, chemistry & nanosciences Engineering sciences Materials and applications Solid state physics, surfaces and interfaces

Abstract

The proposed PhD thesis aims at understanding and identifying the key parameters governing the conversion of orbital moments into spin currents, with the goal of enhancing the write efficiency of spin-orbit torque magnetic random-access memory (SOT-MRAM) devices. The work will employ a multiscale modeling approach comprising ab initio, tight-binding and atomistic calculations of the Orbital Hall Effect (OHE) and Orbital Rashba-Edelstein Effect (OREE). These phenomena exhibit larger magnitudes and diffusion lengths compared to their spin counterparts, Spin Hall Effect (SHE) and Rashba-Edelstein Effect (REE). Furthermore, they are present in a broader range of materials, including low-resistivity light metals. This opens very interesting opportunities for more efficient and conductive materials, potentially lifting the barriers limiting the technological deployment of SOT-MRAM.

This thesis will play a key role in a close collaboration between SPINTEC and LETI laboratories at CEA. The PhD student will conduct ab initio calculations at SPINTEC to unveil fundamental material characteristics to exploit the described orbitronic phenomena, and will construct multi-orbital Hamiltonians at LETI to calculate orbital and spin transport, in strong interaction/synergy with experimentalists working on SOT-MRAM development. The PhD will be co-supervised by M. Chshiev, K. Garello at Spintec and J. Li at LETI. This PhD project will be at the heart of collaborations with leading theoretical and experimental groups at national and international level.

Highly motivated candidates with a strong background in solid-state physics, condensed matter theory, and numerical simulations are encouraged to apply. The selected candidate will perform calculations using Spintec’s computational cluster, leveraging first-principles DFT-based packages and other simulation tools. Results will be rigorously analyzed, with opportunities for publication in international peer-reviewed journals.

Laboratory

Institut de Recherche Interdisciplinaire de Grenoble
DEPHY
Laboratoire Spintec
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down