About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   From Cosmic Web to Galaxies: Tracing Gas Accretion at High Redshift through Observations and Simulations

From Cosmic Web to Galaxies: Tracing Gas Accretion at High Redshift through Observations and Simulations

Astrophysics Corpuscular physics and outer space

Abstract

This thesis aims to develop an integrated understanding of high-redshift galaxies within their large-scale structures. We will investigate how feedback and nuclear activity from these galaxies affect their environments by coupling observational data with cosmological simulations.
Our primary objectives are to:
1. Advance the diagnostic capabilities for studying diffuse gas.
2. Test and validate current paradigms of gas accretion.
Our observational work will utilize new data from Keck and the Very Large Telescope on Lyman-alpha halos around massive groups and clusters at z>2, which are already largely in hand. We will also incorporate a growing body of data from the James Webb Space Telescope (JWST) on the same targets to reveal the properties of galaxies and their active galactic nuclei (AGNs).
On the theoretical side, we will use publicly available results from the TNG100, HORIZON5, and CALIBRE simulations to understand galaxy evolution, learning from both the successes and failures in the comparison with observations. Ultimately, this will allow us to inform new, high-fidelity simulations of the circum-galactic medium, designed specifically to constrain gas accretion processes.
This research directly supports our long-term goal of preparing for the exploitation of BlueMUSE, a new instrument being built for the VLT, in which we participate. It will also address one of the key open questions in astrophysics, as highlighted by the Astro2020 Decadal Survey.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Direction d’Astrophysique
Laboratoire de Cosmologie et d’Evolution des Galaxies
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down