About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Monitoring criticality risk through neutron noise in degraded nuclear environments

Monitoring criticality risk through neutron noise in degraded nuclear environments

Corpuscular physics and outer space Neutronics Nuclear physics

Abstract

Our team at CEA/Irfu is working with ASNR to study the possibility of using neutron noise measurements, i.e., stochastic variations in neutron flux, to estimate the reactivity of subcritical nuclear systems. The aim is to propose this technique for online measurement of the reactivity of the corium at Fukushima Daiichi during future decommissioning operations. The thesis work will focus on evaluating a solution based on Micromegas-type neutron detectors (nBLM detectors) developed by IRFU, which are adapted to the extreme gamma radiation expected in the vicinity of the Fukushima Daiichi corium. The student will participate in experiments at nuclear research facilities in Europe and the United States to test this technical solution and measure neutron noise for a wide range of reactivities. He/she will be responsible for analyzing the data and evaluating the various inversion methods used to estimate reactivity from neutron noise measurements.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique Nucléaire
Laboratoire etudes et applications des reactions nucleaires (LEARN)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down