



This PhD project aims to better understand interstellar medium turbulence, a key phenomenon governing the formation of stars and galactic structures. This turbulence—magnetized, supersonic, and multiphase—influences how energy is transferred and dissipated, thereby regulating the efficiency of star formation throughout the history of the Universe. Its study is complex, as it involves a wide range of spatial and temporal scales that are difficult to reproduce numerically. Advances in high-performance computing, particularly the advent of GPU-based exascale supercomputers, now make it possible to perform much more refined simulations.
The Dyablo code, developed at IRFU, will be used to carry out large-scale three-dimensional simulations with adaptive mesh refinement to resolve the regions where energy dissipation occurs. The study will progress in stages: first, simulations of simple isothermal flows will be conducted, followed by models that include heating, cooling, magnetic fields, and gravity. The turbulent properties will be analyzed using power spectra, structure functions, and density distributions, in order to better understand the formation of dense regions that give birth to stars. Finally, the work will be extended to the galactic scale, in collaboration with other French institutes, to investigate the large-scale energy cascade of turbulence across entire galaxies.

