About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Characterisation of reaction pathways leading to thermal runaway for new battery technologies

Characterisation of reaction pathways leading to thermal runaway for new battery technologies

Engineering sciences Instrumentation Thermal energy, combustion, flows

Abstract

The development of all-solid-state cells is no longer a mere hypothesis today. As part of the Safelimove project, we assessed the safety of hybrid polymer cells of 1 Ah and 3 Ah, which led to a publication. Additionally, within the Sublime project, we evaluated the safety of 1 Ah sulfide-based cells (argyrodite), and a publication is currently being submitted.

With the arrival of these new cells, it becomes even more crucial to support their development with a detailed safety assessment and the identification of the complex mechanisms involved. Large-scale instruments such as synchrotrons and neutron reactors offer a powerful opportunity to achieve this goal, as they provide the best spatial and temporal resolutions. For example, thanks to fast X-ray radiography at ESRF, it is possible to visualize the inside of a cell during thermal runaway, thereby identifying the local impact of (electro)chemical reactions on the microstructure of components and validating our thermal runaway models. Moreover, with wide-angle X-ray scattering (WAXS), it is possible to monitor in situ the evolution of the crystalline structure of active materials during a very rapid thermal runaway reaction. Indeed, synchrotron radiation allows the acquisition of one diffractogram every 3 milliseconds. The neutron beam at ILL also enables us to track the evolution of lithium metal structure before, during, and after runaway. It is important to emphasize that these three techniques are currently mastered by the LAPS teams and have already led, or will lead, to publications.

Furthermore, new complementary techniques may be explored, such as studying the impact of thermal/mechanical stress on active materials using the BM32 beamline, or evaluating the oxidation states of metals via X-ray absorption spectroscopy (XAS) on ID26.

More conventional laboratory characterizations will also be carried out, such as DSC, TGA-MS, and XRD.

As part of our various collaborations, for the all-solid-state system, the active material of the positive electrode will most likely be NMC, or even LMFP in the event of supply difficulties. The electrolyte used will be sulphide-based, or even halide-based, while the anode will be composed of lithium metal or even a lithium alloy. If time permits, a post-Na-ion system will be considered from the second year onwards. Among other things, the thesis will aim to identify, based on the materials used, whether there are reactions prior to cathode destabilisation, whether the solid electrolyte reacts with the oxygen in the cathode or with the anode material, and whether these parallel reactions contribute to better or worse cell safety.

The three years of the PhD will be structured as follows: the first year will be dedicated to a literature review and the characterization of sulfide technology. Following the first milestones (1st CSI) and the evaluation of ongoing work on sulfides, the second year will focus either on sodium-ion technology or on further development of sulfide technology. Finally, the third year, in addition to the thesis writing, will concentrate more specifically on the impact of the identified materials on safety.

Laboratory

Département de l’Electricité et de l’Hydrogène pour les Transports (LITEN)
Service Transverses pour Technologies de Conversion électrochimique et électrique
Laboratoire d'Analyse multi-Physiques et Sécurité
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down