



Cette thèse vise à développer et optimiser des technologies de dispositifs semi-conducteurs avancés pour applications radiofréquences, en s’appuyant sur la filière FD-SOI et en explorant les architectures tridimensionnelles émergentes telles que les transistors GAA et CFET. L’objectif scientifique principal est d’améliorer les performances RF essentielles — telles que fT, fmax, la linéarité ou le bruit — par une co-optimisation conjointe des matériaux, des procédés technologiques et de la conception des dispositifs.
Le projet s’appuiera sur une approche intégrée combinant développement expérimental, analyses structurales, caractérisations électriques et simulations TCAD avancées. Cette méthodologie permettra d’identifier les mécanismes limitants propres à chaque type d’intégration, de quantifier leur potentiel respectif et d’établir un lien direct entre les choix matériaux/processus et les performances RF mesurées. Une attention particulière sera portée à l’ingénierie fine des architectures de transistors, incluant notamment l’optimisation des spacers, des matériaux de grille, du positionnement des jonctions ainsi que des facettes épitaxiées source/drain. La co-conception procédé/dispositif visera à réduire les résistances d’accès, les capacités parasites et les effets de non-linéarité susceptibles de dégrader les performances haute fréquence.
À travers une modélisation comparative des filières planaires FD-SOI et des intégrations tridimensionnelles GAA/CFET, la thèse cherchera à dégager des orientations technologiques pertinentes pour les futures générations de transistors RF. Situé à l’interface entre science des matériaux, physique des dispositifs et ingénierie de fabrication, ce travail ambitionne de fournir des recommandations pour le développement de technologies RF haute efficacité destinées aux communications 5G/6G, aux radars automobiles et aux systèmes IoT basse consommation.

