Co-Optimisations de Conceptions et Technologies (DTCO) pour les applications RF millimétriques: utilisation de l'intégration homogène et hétérogène puce à plaque par collage hybride
Ces dernières années ont été l'objet de nombreuses avancées technologiques dans les semi-conducteurs à base de silicium; néanmoins les limites en termes de performances fréquentielles et de puissance semblent atteintes et imposent le développement de nouveaux composants type III-V (telles que InP et GaN) plus rapides et plus puissants pour les applications RF millimétriques. Pour des raisons de flexibilité, de performances et de coûts, il est primordial de co-intégrer ces nouveaux composants hautes-performances III-V avec les filières plus classiques silicium : c'est un des objectifs majeurs du sujet proposé. Les deux années de formation par la recherche proposées seront principalement l'objet de conceptions et d’optimisations de circuits RF millimétriques tirant partie de la technologie d'assemblage 3D hétérogène puce à plaque collage hybride. De nombreux véhicules de tests ont été réalisés et caractérisés ces dernières années et ont permis de montrer les avantages et inconvénients de l'assemblage puce à plaque collage hybride pour les applications RF millimétriques. Il s'agit donc de prolonger ces travaux et de focaliser les études et recherches sur des systèmes RF réels de type amplificateur de puissance millimétrique. L'approche DTCO (Design and Technology Co-Optimisations) permettra non seulement de concevoir des circuits 3D-RF efficaces, mais aussi des réaliser des ajustements des différentes règles de conception 3D, et ainsi de rendre la technologie d'assemblage 3D par collage hybride pertinente pour la réalisation de systèmes intégrés 3D RF millimétriques.
Caractérisation électrique de matériaux 2D pour la microélectronique
Les composants de microélectroniques du futur seront de plus en plus petit et de moins en moins gourmands en énergie. Pour relever ce défi, les matériaux 2D sont d’excellents candidats du fait de leurs dimensions. De nouveaux matériaux 2D avec des propriétés nouvelles sont créés tous les jours. Mais leur intégration et la mesure de leurs performances dans des circuits est un défi. En effet, ils présentent des surfaces sans liaison pendantes ce qui leur permet de conserver leurs propriétés même à très petites dimensions mais il faut aussi réussir à préserver cette structure pendant l’intégration. Les étapes de dépôt, de transfert et de photolithographie sont susceptibles d’endommager ces surfaces fragiles.
L’objectif de ce post-doc est de développer des composants de caractérisation électrique et magnétique pour des matériaux 2D en configuration horizontale sur silicium. Le laboratoire a déjà mis au point un système de mesure verticale, mais les matériaux 2D étant très anisotropes, la mesure horizontale est nécessaire pour totalement qualifier ces matériaux. En s’appuyant sur les développements du procédé de réalisation vertical, le candidat mettra au point ce système de mesure et caractérisera différents matériaux réalisés en MBE par une autre équipe du CEA.
Comparaison du Diamant et GaN vertical au SiC et Si sur des applications de puissance
L’électrification croissante des systèmes impose des dispositifs de puissance toujours plus performants. Si le carbure de silicium (SiC) est aujourd’hui une technologie mature et industrialisée, d’autres matériaux émergent pour repousser encore les limites. Le diamant, grâce à ses propriétés physiques exceptionnelles, et le nitrure de gallium (GaN) en architecture verticale, offrent un fort potentiel d’amélioration des performances. Cependant, leurs bénéfices réels face aux solutions existantes en silicium (Si) et en SiC restent à démontrer en fonction des applications et des contraintes d’industrialisation.
L’objectif de ce postdoctorat est d’identifier les domaines d’application où ces nouvelles technologies pourraient offrir des gains significatifs en considérant les tendances actuelles et futures du marché. Une approche combinant simulation et expérimentation permettra d’évaluer leur pertinence. À partir de simulations TCAD et SPICE, les performances des composants diamant et GaN vertical seront analysées et comparées aux solutions existantes. Ces simulations seront complétées par des mesures expérimentales réalisées sur des dispositifs de test, afin de confronter les résultats théoriques à des données réelles et d’affiner les modèles.
Le projet inclut l’analyse des besoins industriels, l’optimisation des architectures de composants, ainsi que la validation expérimentale des performances. Ce travail s’inscrit dans un cadre de recherche appliquée, avec des collaborations académiques et industrielles de premier plan. Il offre une opportunité unique de contribuer au développement des futurs dispositifs de puissance tout en travaillant sur des technologies de rupture.
Substrats RF disruptifs à base de matériaux polycristallins
Contexte et Objectifs
L’optimisation des performances des circuits haute fréquence repose sur l’utilisation de substrats de haute résistivité. Aujourd’hui, les substrats SOI (Silicon On Insulator) à haute résistivité avec une couche de pièges électroniques (« trap-rich ») sous l’oxyde enterré (BOX) sont la référence en matière de performances RF dans les technologies CMOS. Cependant, ces substrats présentent deux défis majeurs : 1) Leur coût relativement élevé. 2) Une dégradation des performances RF à des températures de fonctionnement supérieures à 100 °C.
Ce projet postdoctoral propose une approche innovante pour surmonter ces limitations en explorant les performances RF d’un substrat polycristallin de haute résistivité sur toute son épaisseur (plusieurs centaines de microns). Grâce à sa forte densité de pièges électroniques répartis dans tout son volume, ce substrat pourrait garantir une stabilité des performances RF, y compris à haute température.
Missions et Contributions
En rejoignant ce projet, vous travaillerez en collaboration avec le CEA-Leti et l’Université Catholique de Louvain (UCL), deux institutions de renommée internationale en microélectronique et en caractérisation RF. Vous serez impliqué(e) dans toutes les étapes de l’étude, depuis la modélisation jusqu’aux tests expérimentaux :
- Simulation et sélection des matériaux : Réalisation de simulations TCAD pour identifier les substrats polycristallins les plus prometteurs (ex. : poly-Si, poly-SiC, …).
- Intégration des substrats dans un procédé avancé : Développement et intégration des substrats polycristallins dans un process flow SOI au CEA-Leti.
- Caractérisation RF en conditions extrêmes : Mesures des performances RF en fréquence et en température à l’UCL, avec un focus particulier sur la compréhension des mécanismes physiques sous-jacents grâce au croisement des données expérimentales et des simulations.
Calcul Haute performance exploitant la technologie CMOS Silicium à température cryogénique
Les avancées en matériaux, architectures de transistors et technologies de lithographie ont permis une croissance exponentielle des performances et de l’efficacité énergétique des circuits intégrés. De nouvelles voies, dont le fonctionnement à température cryogénique, pourraient permettre de nouvelles avancées. L’électronique cryogénique, nécessaire pour manipuler des Qubits à très basse température, est en plein essor. Des processeurs à 4.2 K utilisant 1.4 zJ par opération ont été proposés, basés sur l’électronique supraconductrice. Une autre approche consiste à réaliser des processeurs séquentiels très rapides en utilisant des technologies spécifiques et la basse température, réduisant la dissipation énergétique mais nécessitant un refroidissement. À basse température, les performances des transistors CMOS avancés augmentent, permettant de travailler à plus basse tension et d’augmenter les fréquences de fonctionnement. Cela pourrait améliorer l’efficacité séquentielle des calculateurs et simplifier la parallélisation des codes informatiques. Cependant, il faut repenser les matériaux et l’architecture des composants et circuits pour maximiser les avantages des basses températures. Le projet post-doctoral vise à déterminer si la température cryogénique offre un gain de performances suffisant pour le CMOS ou si elle doit être vue comme un catalyseur pour de nouvelles technologies de calcul haute performance. L’objectif est notamment d’évaluer l’augmentation de la vitesse de traitement avec des composants silicium conventionnels à basse température, en intégrant mesures et simulations.
Simulation du transport thermique à des températures sub-Kelvin
La gestion thermique dans les ordinateurs quantiques est une tâche urgente et cruciale. Alors que le nombre de qubits augmente rapidement, davantage de circuits électriques sont placés près des qubits pour les faire fonctionner. Le chauffage par effet Joule de ces circuits pourrait considérablement réchauffer le dispositif de qubit, dégradant ainsi sa fidélité. Avec une activité intensive dans le domaine de l'informatique quantique à Grenoble, nous (CEA-LETI, Grenoble, France) recherchons un chercheur post-doctorant enthousiaste pour étudier le transport thermique à des températures cryogéniques (sous-Kelvin).
Le post-doctorant appliquera la fonction de Green hors équilibre par éléments finis [1], développée dans le groupe de Natalio Mingo au CEA-Grenoble, pour simuler le transport des phonons dans diverses structures conçues. Le résultat de la simulation favorisera la comparaison avec les expériences en cours et les discussions constructives afin d'optimiser la gestion thermique.
[1] C. A. Polanco, A. van Roekeghem, B. Brisuda, L. Saminadayar, O. Bourgeois, and N. Mingo, Science Advances 9, 7439 (2023).
Modélisation du bruit de charge dans les qubits de spin
Grace à de forts partenariats entre plusieurs instituts de recherche, Grenoble est pionnière dans le développement de futurs technologies à base de qubits de spin utilisant des procédés de fabrication identiques à ceux utilisés dans l’industrie de la microélectronique silicium. Le spin d’un qubit est souvent manipulé avec des signaux électriques alternatifs (AC) grâce à divers mécanismes de couplage spin-orbite (SOC) qui le couplent à des champs électriques. Cela le rend également sensible aux fluctuations de l'environnement électrique du qubit, ce qui peut entraîner une grande variabilité de qubit à qubit et du bruit de charge. Le bruit de charge dans les dispositifs à qubits de spin provient potentiellement d'événements de chargement/déchargement au sein des matériaux amorphes et défectueux (SiO2, Si3N4…) et des interfaces des dispositifs. L'objectif de ce postdoc est d'améliorer la compréhension du bruit de charge dans les dispositifs à qubits de spin grâce à des simulations à différentes échelles. Ce travail de recherche se fera à l’aide de méthode de type ab initio et également grâce à l’utilisation du code TB_Sim, développé au sein de l’institut CEA-IRIG. Ce dernier est capable de décrire des structures de qubits très réalistes en utilisant des modèles de liaison forte atomique et multi-bandes k.p.
Conception et réalisation du contrôle magnétique de matrices de 1 000 qubits
L’ordinateur quantique est aujourd’hui un axe fort de recherche au CEA-LETI et dans de nombreux instituts et entreprises à travers le monde. En particulier, des champs magnétiques hautes fréquences localisés permettent de contrôler l’état de spin des qubits. Le passage à grande échelle (plus de 1 000 qubits) de cette technique de manipulation représente un véritable challenge technologique.
L’analyse bibliographique et les études déjà réalisées permettront de faire ressortir les avantages et les inconvénients des différentes techniques de contrôle. En collaboration avec les équipes d’intégration technologique, de simulation et de conception, de nouveaux développements technologiques et différents designs pourront être proposés pour mettre à profit les procédés disponibles (assemblages 3D, matériaux supraconducteurs…) et aboutir à la réalisation d’une preuve de concept pour le contrôle de qubits.
Développement de substrats grande surface pour l’électronique de puissance
L’amélioration des performances des composants en électronique de puissance constitue un enjeu majeur pour la réduction de notre consommation d’énergie. Le diamant apparaît comme le candidat ultime pour l’électronique de puissance. Cependant les petites dimensions et le prix des substrats sont des freins à l’utilisation de ce matériau. L’objectif principal du travail est de dépasser ces deux difficultés en découpant les échantillons en couches minces par SmartCut™ et en réalisant un pavage de ces couches minces pour obtenir des substrats compatibles avec la microélectronique.
Pour cela, différentes expériences seront réalisées en salle blanche. Dans un premier temps, il faudra fiabiliser le procédé SmartCut™. Des caractérisations du type microscopie optique, AFM, MEB, Raman, XPS, électriques… seront réalisées afin de mieux comprendre les mécanismes qui entrent en jeu dans ce procédé.
Le candidat pourra être amené à travailler sur les autres matériaux grand gap étudiés au laboratoire comme le GaN et le SiC ce qui lui permettra d’avoir une vision élargie sur les substrats pour l’électronique de puissance.
Conception de Matrice 2D pour Calcul Quantique sur Silicium avec Validation par Simulation
L'objectif est de concevoir une structure matricées 2D pour le calcul quantique sur silicium afin d'envisager des structures de plusieurs centaines de Qubits physique.
En particulier le sujet sera focalisé sur :
- La fonctionnalité de la structure (interaction coulombienne, RF et quantique)
- Les contraintes de fabrication (simulation et contrainte de procédé réaliste)
- La variabilité des composants (Prise en compte de paramètre de variabilité et défectivité réaliste)
- Les contraintes induites sur les algorithmes (code de correction d'erreur)
- Scalabilité de la structure vers des milliers de Qubit physiques
Le candidat travaillera au sein d'un projet de plus de cinquante personnes avec des expertises couvrant la conception, la fabrication, la caractérisation et la modélisation des qubits de spin ainsi que des disciplines connexes (cryoélectronique, algorithmes quantiques, correction d'erreurs quantiques, …)