Modélisation des effets de piégeages et des fuites verticales dans les substrats épitaxiés GaN sur Si
Etat de l’art : La compréhension et la modélisation des fuites verticales et des effets de piégeages dans les substrats GaN sur Si font partie des sujets cruciaux d’études visant à améliorer les propriétés des composants de puissance sur GaN : réduction du courant de collapse et des effets d’instabilités de Vth, réduction du courant de fuite à l’état OFF.
De nombreuses universités [Longobardi et al. ISPSD 2017 / Uren et al. IEEE TED 2018 / Lu et al. IEEE TED 2018] et industriels [Moens et al. ISPSD 2017] tentent de modéliser les fuites verticales mais jusqu’à l’heure aucun mécanisme clair n’émerge de ces travaux pour les modéliser correctement sur toute la gamme de tension et températures visées. De plus la modélisation des effets de piégeages dans l’épitaxie est nécessaire à l’établissement d’un modèle TCAD de dispositif robuste et prédictif.
Pour le LETI, l’intérêt stratégique d’un tel sujet est double : 1) Comprendre et réduire les effets de piégeages dans l’épitaxie impactant le fonctionnement des dispositifs GaN sur Si (current collapse, instabilités de Vth…) 2) Atteindre les spécifications de fuites @ 650V nécessaires aux applications industrielles.
Le candidat devra prendre en charge en parallèle les caractérisations électriques et les développements de modèles TCAD :
A) Caractérisations électriques avancées (I(V), I(t), substrate ramping, C(V)) en fonction de la température et de l’illumination sur des substrats épitaxiés ou directement sur des composants finis (HEMT, Diodes, TLM)
B) Etablissement d’un modèle TCAD robuste intégrant les différentes couches de l’épitaxie afin de comprendre les effets d’instabilités des dispositifs (Vth dynamique, Ron dynamique, BTI)
C) Modélisation de la conduction verticale dans l’épitaxie dans l’optique de réduire les courants de fuites à 650V
Enfin, le candidat devra être force de proposition pour améliorer les différentes parties du substrat
Conception de circuit digitaux pour le calcul dans les mémoires non-volatiles résistives
Pour répondre à différents enjeux scientifiques et sociétaux, les circuits intégrés de demain doivent gagner en efficacité énergétique. Or, la majorité de leur énergie est aujourd’hui consommée par les transferts de données entre les blocs mémoire et logique dans des architectures circuit de type Von-Neumann. Une solution émergente et disruptive à ce problème consiste à rendre possible des calculs directement dans la mémoire (« In-Memory-Computing »). Les nouvelles technologies de mémoires résistives non-volatiles et de transistors à nanofils de silicium développées au LETI et intégrées en 3D permettraient de proposer pour la première fois une solution technologique performante et viable à un calcul intensif dans la mémoire.
Un projet transverse a commencé sur le sujet au Leti: de l’application à l’implémentation technologique, en passant par le logiciel et le circuit. Le but est de créer des nano-fonctionnalités en mixant à très faible échelle des dispositifs logiques et mémoires à très grande densité et très grosses capacités [ArXiv 2012.00061]. Un accélérateur circuit de In-Memory-Computing sera conçu et fabriqué au Leti, permettant d’améliorer les performances énergétique d’un facteur 20 par rapport à un circuit Von-Neumann de l’état de l’art.
Simulation et caractérisation électrique d’un cube logique / mémoire dédié au calcul dans la mémoire
Pour répondre à différents enjeux scientifiques et sociétaux, les circuits intégrés de demain doivent gagner en efficacité énergétique. Or, la majorité de leur énergie est aujourd’hui consommée par les transferts de données entre les blocs mémoire et logique dans des architectures circuit de type Von-Neumann. Une solution émergente et disruptive à ce problème consiste à rendre possible des calculs directement dans la mémoire (« In-Memory-Computing »). Les nouvelles technologies de mémoires résistives non-volatiles et de transistors à nanofils de silicium développées au LETI et intégrées en 3D permettraient de proposer pour la première fois une solution technologique performante et viable à un calcul intensif dans la mémoire.
Un projet transverse au leti a commencé sur le sujet: de l’application à l’implémentation technologique, en passant par le logiciel et le circuit. Le but est de créer des nano-fonctionnalités en mixant à très faible échelle des dispositifs logiques et mémoires à très grande densité et très grosses capacités. Un accélérateur circuit de In-Memory-Computing sera conçu et fabriqué au LETI, permettant d’améliorer les performances énergétique d’un facteur 20 par rapport à un circuit Von-Neumann de l’état de l’art.
Le poste de post-doctorant proposé s’inscrit dans ce projet et vise à simuler et caractériser un CUBE logique/mémoire dédié au "In-Memory-Computing". Le post-doctorant réalisera des caractérisations électriques de transistors et mémoires pour calibrer des modèles et fera des simulations TCAD et spice pour aider au dimensionnement de la technologie et permettre la conception des circuits.
Developement de la technologie FDSOI au delà du noeud 10nm
Le FDSOI est reconnue comme une technologie prometteuse pour les applications mobiles, l’IOT ainsi que pour les applications radiofréquences pour les futurs nœuds technologiques [1]. Le LETI est un pionnier dans la technologie FDSOI ce qui lui permet d’apporter des solutions innovantes afin de soutenir des partenaires industriels.
La réduction d’échelle du FDSOI au delà du nœud 10nm offres de nouvelles perspectives en termes de SOC et de performances RF. En revanche d’un point de vue intégration cela pose de nouveaux challenges. En effet le réduction de l’épaisseur du canal en dessous de 5nm devient difficile car il faut garantir une bonne mobilité des porteurs tout en conservant une bonne variabilité. Ainsi, l’introduction de solutions technologiques innovantes comme booster de performances devient nécessaire (Stress dans le canal, architectures alternatives de grille, optimisation des capacités parasites, le tout en tenant compte des règles de dessin de plus en plus agressives [2]).
La viabilité de ces nouveaux concepts devra être validée dans un premier temps par simulations TCAD et ensuite implémentés sur des lots 300mm.
Ce sujet est en ligne parfaite avec la nouvelle stratégie du LETI ainsi qu’en total accord avec l’annonce des futurs investissements [3].
Le candidat sera en charge des simulations TCAD pour définir les variantes à intégrer sur les lots jusqu’à la caractérisation électrique. Les simulations TCAD seront faites en collaboration avec l’équipe TCAD du LETI. Le candidat devra faire preuve d’innovation, de dynamisme, un bon relationnel pour travailler en équipe est indispensable.
[1] 22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications, R. Carter et al, IEEE IEDM 2016.
[2] UTBB FDSOI scaling enablers for the 10nm node, L. Grenouillet et al, IEEE S3S 2013.
[3]https://www.usinenouvelle.com/article/le-leti-investit-120-millions-d-euros-dans-sa-salle-blanche-pour-preparer-les-prochaines-innovations-dans-les-puce
Report de composants de puissance pour amélioration des performances
Une thèse actuellement dans le laboratoire a permis de démontrer l’intérêt du report d’un HEMT de puissance en GaN sur une embase métallique en cuivre vis-à-vis du self heating sans dégrader la tenue en tension du composant.
Il y a encore beaucoup de points à étudier pour améliorer au mieux les composants de puissance.
Actuellement des labos comme l’IEMN, HKUST et MIT s’intéressent à ce procédé et étudient des solutions connexes.
Nous proposons de comprendre quelle est la meilleure intégration à faire pour éliminer le self-heating et augmenter la tenue en tension du composant initial. L’impact sur la polarisation du GaN et sur la qualité du gaz 2D sera analysée.
La même approche pourra être faite si besoin sur les composants RF.
Différents empilements seront réalisés par le post-doc et il aura en charge de réaliser les caractérisations électriques. La compréhension du rôle de chaque partie de la structure sera primordiale pour décider de l’empilement final.
Ce procédé sera également amené en grandes dimensions.
Ce post-doc travaillera si besoin en collaboration avec les différentes thèses sur les composants de puissance.
Simulation de nanofils semi-métalliques
La mission du candidat sera :
• Simulation utilisant des outils ab-initio de la structure de bandes de nanofils de bismuth de différent diamètres (de 1 nm à 10 nm).
• Extraction de paramètres tes que masses effectives, densité d’états, band offsets pour ces nanofils.
• Implémentation de ces paramètres dans un simulateur NEGF pour simuler des transistors en nanofils de bismuth à diamètre variable.
• Simulation ab-initio de l’interface nanofil de bismuth – diélectrique et étude de différents éléments de passivation chimique.
• Ce travail se fera en collaboration avec le groupe LETI/DCOS/SCME/LSIM (Philippe Blaise)
• Le candidat interagirera avec une équipe expérimentale qui fabriquera les dispositifs simulés et sera amené à aider à encadrer un ou plusieurs doctorants, en collaboration avec IMEP.
• Le candidat interagirera avec le LTM pour les aider à prédire les propriétés de l’interface bismuth-isolant de grille et pour implémenter dans le simulateur les résultats de mesures sur ces interfaces (IMEP).
Développement d’actionneur piézoélectrique sans plomb en couches minces
Au sein de CEA-Tech, l’Institut LETI crée de l’innovation et la transfère à l’industrie. Le LCMA, laboratoire de composants micro-actionneurs, travaille sur l’intégration de matériaux piézoélectriques dans des microsystèmes permettant d’obtenir la fonction de transduction électromécanique. Le Titanate Zirconate de Plomb (PZT) est à ce jour le matériau piézoélectrique le plus performant pour les applications micro-actionneur. Cependant, la mise en place dans un futur proche d’une nouvelle norme concernant le taux de plomb autorisé dans les puces (directive européenne RoHS) nous amène à évaluer des matériaux sans plomb alternatifs au PZT pour les applications actionneurs piézoélectriques. Le développement de matériaux sans plomb est de fait devenu un axe majeur de la recherche sur les piézoélectriques. Ces recherches ont amené à revisiter et modifier certains matériaux piézoélectriques classiques tels que les KNbO3 et BaTiO3. La famille des KNaxNb1-xO3 (KNN) a notamment été identifiée comme une piste prometteuse. L’objectif du postdoc est donc d’évaluer des matériaux piézoélectriques sans plomb et de comparer leurs propriétés à celle du matériau de référence, le PZT. Des véhicules de test simples seront réalisés dans la salle blanche du LETI pour être ensuite caractérisés au moyen de différentes techniques disponibles dans nos laboratoires pour évaluer les performances électriques et piézoélectriques de ces matériaux. Dans le but de mener à bien ce travail, le candidat pourra s’appuyer sur une solide expérience des experts LETI développée depuis maintenant presque 20 ans sur les matériaux piézoélectriques en couches minces.
Microbatteries bio-compatibles et bio-résorbables pour applications médicales
Dans le cadre de son activité micro-sources d’énergie embarquées, le LETI initie des études prospectives dans le domaine des microbatteries pour applications médicales, et plus particulièrement pour l’alimentation de micro-dispositifs implantables. A cette fin, un projet labélisé Carnot impliquant deux laboratoires du LETI (microbatteries, bio-packaging) et un laboratoire CNRS (ICMCB, Bordeaux) a pour objectif la conception et l’étude de micropiles bio-resorbables.
Les principales missions consisteront donc (i) à participer à la conception, par un choix adapté de matériaux, d’un système électrochimique en film mince assurant une alimentation électrique adéquate (tension, capacité), corrodable et solubilisable dans l’organisme de manière contrôlée, (ii) à réaliser les constituants (électrodes, électrolyte) sous forme de films minces (pulvérisation cathodique, dépôt électrolytique, enduction) et à les caractériser individuellement, (iii) à finaliser la réalisation de micropiles prototypes et à étudier leur comportement.
Le travail sera réalisé à l’ICMCB (Bordeaux) au sein d’une équipe mixte CEA/CNRS, en étroite collaboration avec les laboratoires grenoblois. Les résultats obtenus et l’activité inventive devront prioritairement faire l’objet d’une analyse de propriété intellectuelle en vue de leur protection ou exploitation, ainsi que si possible de publications scientifiques.
Optimisation du cascode monolithique de puissance en technologie MOS-ChannelHEMT GaN/Si
Afin de répondre au besoin de la conversion d’énergie, notamment pour les applications automobile ou photovoltaïque, la technologie des transistors de puissance GaN/Si s’oriente aujourd’hui vers des composants E-mode avec des performances agressives en termes de tension de seuil (>2V), de courant nominal (100-200A), de tension de claquage (650 et 1200V) et d’immunité au phénomène de « current collapse ». Le cascode discret est assez largement utilisé aujourd’hui pour répondre à ce besoin (Transphorm, On-Semi, NXP, IR…) mais il présente certains problèmes spécifiques (inductances parasites, appairage, composants additionnels, coût, fonctionnement limité en température lié à la puce Si …). Le cascode monolithique est une version très compacte du cascode qui doit permettre d’éviter ces problèmes mais aussi d’améliorer les performances des transistors E-mode intrinsèques (MOS-C HEMT ) étudiés au Leti. D’autres acteurs du GaN ont d’ailleurs suivi une approche similaire sur une autre technologie E-mode intrinsèque de type p-GaN gate, sans nécessairement l’afficher comme telle.
Le Leti a fait récemment la démonstration de ce cascode monolithique dans le cadre d’une thèse 2014-2016 sur la base de sa technlologie MOS-C HEMT, compatible C-MOS en GaN/Si 200mm. Ce post-doc propose d’optimiser ce composant dans la continuité des travaux de thèse. Il doit permettre d’améliorer les performance de ces transistors en terme de Ron, Ron.specifique, pertes de commutation et fréquence de fonctionnement afin de répondre au besoin de nos partenaires industriels.
Résonateurs et filtres à ondes élastiques de plaque agiles en fréquence
L’accroissement du nombre de bandes de fréquences différentes devant être prises en compte pour la téléphonie mobile entraîne une explosion du nombre de filtres passe-bande utilisés dans ces systèmes. Dans cette optique, la possibilité de rendre des résonateurs et des filtres agiles en fréquence se présente comme un élément clef des futurs systèmes de transmission sans fil.
Le CEA LETI travaille depuis plusieurs années au développement de résonateurs et de filtres à ondes élastiques, notamment guidées dans des films minces piézoélectriques. En parallèle, il a proposé plusieurs concepts de résonateurs et de filtres agiles en fréquence.
Le but de ce post-doc consistera donc à approfondir ces idées et à travailler à la conception de ces composants. En interaction avec les membres de l’équipe projet responsables de la fabrication de ces composants, le candidat étudiera différentes structures permettant d’apporter de l’agilité ou de la reconfigurabilité à ces composants, proposera des solutions innovantes, et caractérisera les composants réalisés en salle blanche. Des démonstrateurs répondant à des applications concrètes seront enfin proposés et réalisés.