Comportement de matériaux en sels fondus

L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour les centrales solaires ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
La plupart des alliages commerciaux, qu’ils soient à base de nickel ou à base de fer, semblent se dégrader très rapidement dans ces milieux fondus. Il est donc nécessaire d’élargir le champs d’expérimentation à des matériaux plus innovants. Aussi un screening de matériaux est prévu pour sélectionner les meilleures nuances de matériaux.
Après sélection des matériaux les plus intéressants, une étude des mécanismes de corrosion est prévue, via des analyses MEB, DRX, SDL, ICP etc, des techniques électrochimiques et l’utilisation de logiciels thermodynamiques de type HSC et Factsage.
L’objectif du sujet post doctoral proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en l’étude intégrale du comportement de divers matériaux. Par intégrale, il est ici entendu depuis la préparation d’éprouvette à la caractérisation des produits de corrosion. Cette thématique revêt un haut caractère expérimental et de compréhension des mécanismes de corrosion. Ce sujet s’inscrit dans le cadre d’un projet regroupant des industriels à la pointe du nucléaire français (EDF, Framatome, Orano). Les résultats obtenus seront ainsi susceptibles d’être présentés aux différents partenaires.

Science des données pour les matériaux hétérogènes

Pour mieux prédire les propriétés fonctionnelles des matériaux hétérogènes par des démarches basées sur la simulation numérique, il est impératif de fournir des données fiables concernant l’agencement spatial des phases constitutives des matériaux ainsi que leurs propriétés. Dans ce but, de nombreux outils expérimentaux sont couramment employés pour caractériser spatialement les propriétés physiques et chimiques des matériaux, générant des données multispectrales. Un axe de progrès pour une meilleure compréhension des phénomènes est donc la combinaison des différentes données d’imagerie par les techniques de la science des données. L’objectif de ce post-doc est d’enrichir les connaissances matériau, par la découverte/quantification des corrélations dans les données (par exemple établir des liens entre la composition chimique et le comportement mécanique) et de fiabiliser et réduire les incertitudes sur les propriétés, en prenant en compte des informations physiques et chimiques. Des outils logiciels seront mis au point et appliqués a des données d’intérêt acquises sur des matériaux cimentaires ou des couches de produits de corrosion d’objets archéologiques.

Développement de l’analyse d’isotopes de faible abondance par spectrométrie de masse. Application au 144Ce et au 106Ru.

L’objectif de ce projet consiste à mettre au point les méthodes d’analyse de haute précision du 144Ce et 106Ru par spectrométrie de masse afin de qualifier les calculs neutroniques associés dans des échantillons irradiés. Ces deux isotopes sont présents en faible abondance dans les échantillons étudiés et présentent des interférences isobariques significatives, principalement avec le 144Nd et le 106Pd, respectivement. Pour mener à bien ce projet, le(a) candidat(e) réalisera les développements analytiques en laboratoire conventionnel sur des échantillons inactifs, puis transposera ces développements en zone contrôlée pour l’analyse d’échantillons réels afin de valider la procédure. Dans le cas du 144Ce, la mise en œuvre d’un couplage entre la chromatographie liquide haute performance (HPLC) et l’ICPMS-MC, associé à la technique de la dilution isotopique pour la détermination précise des teneurs atomiques, est envisagée. Concernant le 106Ru, la détermination de la concentration en 101Ru sera réalisée dans un premier temps par ICPMS-Q et le rapport 101Ru/106Ru sera déterminé par couplage HPLC/ICPMS-Q ou HPLC/ICPMS-MC afin de lever l’interférence 106Pd/106Ru.

Développement de méthodes de quantification de l’U dans des cellules exposées à l’uranium

Ce projet s’intègre dans le programme transversal TOXICOLOGIE, mené par le CEA, dont la vocation est d’aborder par des approches pluridisciplinaires les effets potentiels sur le Vivant d’éléments d’intérêt stratégique pour le CEA. L’objectif est d’aider à la compréhension des mécanismes de toxicité et du comportement de l’uranium, en cohérence avec sa spéciation dans des cellules en culture. En effet, la spéciation des éléments gouverne leur biodisponibilité, leur accumulation, leur biodistribution, leur toxicité, leur détoxification et leurs mécanismes d’interaction au niveau moléculaire.
Le sujet de ce stage post doctoral (12 mois) consistera à :
- Mettre au point des méthodes de quantification de l’U accumulé dans les cellules ainsi que des teneurs d’éléments traces endogènes après exposition des cellules à de l’uranium.
- Développer des méthodes de détermination de la composition isotopique précise de l’U dans les cellules après exposition.
Le candidat sera en charge de développer des méthodes de purification chimique et de mesure pour les analyses élémentaires et isotopiques précises. Les analyses seront réalisées à l’aide de spectromètres de masse à source à plasma inductif quadripolaire (ICP-MS Q) ou multi-collection de dernière génération (ICP-MS MC), afin d’atteindre des incertitudes les plus faibles possibles.

Evolution des couches superficielles résultant des interactions physico-chimiques entre bétons bas pH et argiles : expérimentations et simulations

La conception d’une installation industrielle de stockage de déchets radioactifs en milieu géologique est un enjeu important pris en compte dans la filière énergétique nucléaire française. Dans ce contexte les matériaux cimentaires occupent une place importante (colis, structures).
L’objectif principal de l’étude proposée est de caractériser les altérations des matériaux mis en contact dans le stockage (interface béton-argile), provoquées par les sollicitations chimiques qu’ils s’infligent mutuellement. Au stade actuel, une approche globale a été enclenchée prenant en compte simultanément la chimie du site de stockage et les bétons envisagés pour cette application à base de ciments commerciaux ou de liants innovants (bas pH) formulés spécifiquement. Sur ces matériaux bas pH en particulier, des questions subsistent quant à leurs évolutions minéralogiques et microstructurales dans le temps. Un programme expérimental bien ciblé (essais dédiés, caractérisations microscopiques), complété par des simulations numériques, permettra de consolider les connaissances indispensables en vue d’une utilisation de ces matériaux.
Ce projet fera intervenir à la fois des spécialistes des matériaux cimentaires du CEA, ainsi que des chercheurs du laboratoire Hydrasa de l’Université de Poitiers.

Développement d’une mesure de Xe et Kr par « Cavity RingDown Spectroscopy » pour l’amélioration de la sûreté des réacteurs à neutrons rapides

L’augmentation de la demande énergétique mondiale a incité plusieurs pays à travailler sur des réacteurs nucléaires de 4ième génération, économes en minerai, plus sûrs, moins proliférant et générant des déchets moins toxiques. Dans ce cadre, la France doit concevoir le démonstrateur ASTRID, un réacteur à neutrons rapides, refroidi au sodium. Des techniques analytiques innovantes sont étudiées pour améliorer la sûreté et le pilotage du réacteur. L’apparition de faibles quantités de produits de fission xénon et krypton dans le ciel de pile, constitué d’argon, indique une rupture de gaine de combustible. La détection rapide, sensible et sélective (isotopique) de ces gaz rares par la technique CRDS (Cavity RingDown Spectroscopy) est en cours de développement et d’évaluation au CEA Saclay. Cette activité s’insère au département de physico-chimie (DPC) dans le service d’étude du comportement des radionucléides (SECR), dont une des missions est le développement des techniques d’analyse de gaz. Le service collabore avec D. Romanini du LIPhy, à l’Université J. Fourier de Grenoble, pour les mesures de traces par CRDS et OFCEAS (Optical Feedback Cavity Enhanced Absorption Spectroscopy).
Un banc de mesure CRDS couplé à une décharge luminescente a été mis en œuvre et mesure des fractions molaires inférieures à la partie par milliard de xénon dans l’argon. Pour quantifier les différents isotopes, le candidat devra prendre en compte la saturation optique de la transition dans l’analyse des données expérimentales. Les mesures optimisées et caractérisées pourront être ensuite appliquées au krypton.
A. Pailloux & al., depôt de brevet 11 62436 (2011)
P. Jacquet, A. Pailloux, submitted to J. Anal. Atom. Spectrom. (2013)
N. Sadeghi, J. Plasma Fusion Research 80 (9), pp 767-776 (2005)

Top