Echangeurs d’ions hybrides pour le traitement des Liquides Organiques Radioactifs : aide au design par dynamique moléculaire

Le projet ECCLOR (Projet labellisé ‘Investissement pour le future’) se concentre sur le traitement des effluents organiques radioactifs en développant des matériaux poreux capables d'éliminer sélectivement les ions émetteurs alpha. Les recherches menées au CEA ont permis de concevoir des matériaux hybrides avec des performances variables dans la capture des émetteurs alpha présents dans les liquides organiques. Comprendre ces performances à l'échelle moléculaire est essentiel mais complexe.
Pour répondre à ce défi, ce contrat post-doctoral se penche sur l'utilisation de la dynamique moléculaire classique pour rationaliser ces performances. Les travaux seront menés au laboratoire LILA du centre de recherche de Marcoule, profitant de l'expertise des équipes spécialisées dans la modélisation des systèmes solide/liquide par dynamique moléculaire classique.
Pour soutenir ces simulations, des données expérimentales pourront être fournies par des laboratoires tels que le Laboratoire des Procédés Supercritiques et de Décontamination (LPSD) et le Laboratoire de Formulation et Caractérisation des Matériaux minéraux (LFCM). Les résultats obtenus seront examinés lors de réunions d'avancement et feront l'objet de publications scientifiques.
En résumé, ce contrat post-doctoral vise à coupler des approches théoriques à l’expérience. La compréhension des interactions au sein de ces matériaux à l’échelle moléculaire est essentielle afin d’apporter des éléments de compréhension et améliorer les procédés actuellement en cours d’étude.

Conception de nouveaux outils microfluidiques pour les procédés chimiques d’extraction liquide-liquide

Cette proposition de post-doc de 12 mois s’inscrit dans le cadre du PIA MiRAGe : Plan d’Investissement Avenir « Outils Microfluidiques pour une R&D Accélérée sur les procédés de recyclaGe ».
Le projet MIRAGE vise à proposer un ensemble d’outils, plateformes et méthodes micro et millifluidiques permettant d’accélérer, intensifier et de rendre plus flexibles la R&D sur les nouveaux procédés de recyclage de métaux stratégiques (nucléaires ou non nucléaires) tout en minimisant les quantités de matières mises en œuvre.
Pour ce faire de nouveaux outils microfluidiques ont été conçus au CEA ISEC pour réaliser des opérations d’extraction liquide-liquide à contre-courant. Ces outils permettent de bousculer les ordres de grandeur dans l’importance des phénomènes physico-chimique mis en œuvre.
L’intérêt de cette invention est double et sera le cœur de travail de ce post-doc :
-Effectuer des opération d’extraction sur des temps et des volumes liquides très faibles.
-Transposer cette invention à des volumes plus importants.
Ainsi, dans un premier temps ce travail de post-doc cherchera à étudier plus en détail les capacités de ce nouveau dispositif microfluidique, puis à transposer cette nouvelle technique à des contacteurs plus volumineux.
Le travail sera effectué dans les installations de l’ISEC au CEA, sur le site de Marcoule en partenariat avec le CNRS, Universités et l’INP de Toulouse.

Conversion de l’uranium et du plutonium par dénitration thermique avancée en présence d’additifs organiques

Les procédés de conversion de l’uranium et du plutonium consistant au passage d’actinides présents en solution à une forme solide permettant la fabrication de combustible MOx (Mixed Oxide fuel) occupent une place clé dans le recyclage du combustible nucléaire usé. Plus particulièrement, la préparation d’oxydes homogènes (U,Pu)O2 constitue un enjeu dans l’optique d’un multi-recyclage des actinides présents dans le combustible usé. Dans ce contexte, la conversion par voie ADOA (Advanced Denitration in presence of Organic Additives) constitue une option permettant la préparation d’oxyde avec une excellente homogénéité de la distribution cationique, sans nécessiter d’étape d’ajustement valentiel. Ce procédé repose sur la formation d’un gel polymère en phase aqueuse, permettant de piéger de façon homogène les actinides présents en solution, puis à déshydrater et calciner ce gel pour former des oxydes d’actinide. Néanmoins, une optimisation des conditions physico-chimiques à mettre en œuvre pour adapter ce procédé à l’industrie nucléaire et obtenir des oxydes adaptés aux opérations de fabrication du combustible nucléaire reste nécessaire.
L’objectif de ce projet de recherche postdoctoral sera de préciser les conditions à mettre en œuvre lors de la polymérisation, du séchage du gel et de sa calcination pour développer un protocole complet et évaluer la robustesse du procédé. Les aspects liés à la morphologie des oxydes d’actinide obtenus, à la teneur en impuretés à l’issue des essais (en particulier la teneur en carbone résiduel), la facilité de mise en œuvre du procédé et son adéquation avec la fabrication de pastilles de combustible MOx seront particulièrement étudiés.
Le (la) candidat(e) recherché(e) devra être titulaire d'une thèse en radiochimie ou chimie des matériaux. Les résultats obtenus seront valorisés par le biais de brevets et/ou de publications permettant d’ouvrir des perspectives d’emploi en recherche académique ou en R&D industrielle.

Optimisation des scénarios de transition énergétique par une approche dynamique de l’Analyse de Cycle de Vie

La modélisation de la transition énergétique, avec une projection jusqu’en 2050 et adaptable à différents pays ou stratégies, est complexe en termes d’ACV car elle fait intervenir de nombreux paramètres :
- une dizaine d’énergies possibles, avec des inventaires évolutifs de construction des infrastructures de production/stockage d’électricité
- une évolution délicate à estimer des technologies pour une filière donnée
- une production d’électricité en adéquation avec la consommation nationale, pouvant prendre des trajectoires très variées
- des scénarios très contrastés possibles, incluant des montées en puissance plus ou moins rapides des renouvelables et une baisse temporaire du nucléaire, compensée ou non par des centrales à cycle combiné au gaz
- une nécessité de prévoir plusieurs formes de stockage de l’électricité selon l’importance du parc d’énergies non pilotables, avec des puissances dépendant de la durée de stockage
- la corrélation ou non de la puissance de stockage avec le niveau d’interconnexion des réseaux électriques européens.
Le travail consistera à analyser les inventaires disponibles dans la base Ecoinvent couplée à SimaPro, à les modifier selon les technologies prévisibles pour le moyen terme, à compléter la modélisation en langage Python pour inclure la totalité des paramètres envisagés.
L’objectif est de déterminer les meilleurs trajectoires possibles d’un point de vue environnemental, en s’appuyant sur les « midpoints » puis les « endpoints » pour réduire le nombre d’indicateurs et fournir in fine un outil flexible d’aide à la décision.

modélisation de la cinétique de précipitation de l’uranium en fonction du pH. Application à un réacteur à lit fluidisé

L’usine Orano au Niger (Somaïr) précipite son concentré uranium dans un réacteur à lit fluidisé par ajout d’hydroxyde de sodium. Le concentré obtenu contient environ 6% de sodium qui entraine des pénalités du convertisseur. Orano a effectué en fin d’année 2019 des essais sur un lit fluidisé au laboratoire pour changer le point de fonctionnement de la précipitation et former préférentiellement de l’UO3 via un changement de pH. Pour affiner le pilotage de l’unité industrielle, une modélisation des réactions de précipitation de l’uranium s’avère nécessaire. Le candidat devra proposer et calibrer un modèle de la précipitation compétitive de Na2U2O7 et UO3 basé sur les constantes d’équilibre et des cinétiques des réactions, en fonction du pH au sein du réacteur. En particulier, le modèle devra permettre de comprendre l’impact du pH sur la répartition des deux espèces principales identifiées dans le concentré : Na2U2O7 et UO3. Ce modèle chimique devra servir de donnée d’entrée à un modèle physique existant du réacteur à lit fluidisé. Un élargissement du modèle à d’autres réactifs de précipitation, notamment la magnésie pourrait également être étudié.

Suivi dynamique par diffusion de la lumière du transfert de matière entre phases dans des écoulements multiphasiques

La compréhension et la modélisation des procédés de recyclage étudiés au CEA nécessitent la mesure des propriétés locales et moyennes des écoulements multiphasiques impliqués dans les différents appareils de génie chimique étudiés. La R&D étant en outre généralement basée sur des expérimentations à petite échelle, l’accès à ces grandeurs est bien souvent difficile, et ne doit, bien entendu, pas perturber le système observé. Dans ce contexte les méthodes optiques, associées à une simulation fine des phénomènes physiques d’interactions lumière/matière, sont particulièrement appropriées et font l’objet depuis plusieurs années de développements spécifiques. C’est pourquoi, le DMRC/LGCI étudie, en collaboration avec des partenaires académiques (CNRS/IUSTI), deux techniques interférométriques optiques adaptées à la caractérisation dans les appareils utilisés en R&D procédé : l’HN en ligne et la Réfractométrie Arc-en-Ciel (RAC). Les études antérieures ont montré que l’HN permet une mesure simultanée de la position 3D, de la forme et de la taille, de particules au sein d’un écoulement, y compris en géométries astigmatiques, alors que la seconde donne accès à la taille et à l’indice de réfraction d’une particule isolée ou d’un nuage de particules, ce qui, dans le contexte de l’optique linéaire, est directement liée à leur composition. Ces travaux visent à aller plus loin dans la caractérisation des écoulements multiphasiques avec ces deux techniques en poursuivant trois objectifs principaux: 1) proposer des solutions originales pour caractériser par holographie numérique en ligne le matériau des particules détectées, 2) repenser les méthodes inverses de la réfractométrie arc-en-ciel pour permettre l’étude de nuages de particules de composition variable et les gradients autour d’une goutte sessile, 3) évaluer l’applicabilité de ces différentes solutions sur des systèmes micro fluidiques.

Matériaux cristallins pour l’extraction sélectives de cations métalliques monovalents : compréhension du lien entre structure cristalline et sélectivité

L’extraction sélective de cations métalliques monovalents de solutions aqueuses de compositions complexes est une étape clé dans de nombreux domaines liés à l’énergie. Au cours de cette étude, des adsorbants spécifiques pour le Cs, en vue d’une décontamination d’effluents produits par l’industrie nucléaire, et pour le Li, afin de pouvoir extraire et récupérer ce métal stratégique pour le développement de batteries, seront étudiés. De par leur modularité en terme de porosité et de structure, les oxydes cristallins (type zéolithe) sont prometteurs pour extraire sélectivement de tels cations. Afin de comprendre le rôle de leur microstructure sur leurs performances et mécanismes de sorption/désorption, il est important de pouvoir identifier les sites de sorption sélectifs au sein de ces structures cristallines.
L’objectif de ce travail de recherche est ainsi, d’une part, de synthétiser des structures cristallines permettant la sorption sélective du Cs ou du Li. Puis, grâce à des caractérisations fines à l’échelle atomique ainsi que des travaux de reconstruction de structures, nous allons chercher à identifier la localisation des sites sélectifs de sorption au sein de ces matériaux et, de cette manière, mieux comprendre leurs mécanismes et propriétés de sorption.
Pour ce contrat post-doctoral, nous recherchons un docteur en science des matériaux possédant de fortes compétences en synthèse et en caractérisation de matériaux cristallins par diffractions des rayons X. Une expérience sur l’étude d’oxydes cristallins, type zéolithe, serait un plus.

Post-doc : réseau de neurones CNN - gestion des incertitudes dans la base de données d'apprentissage

L'objectif de ce postdoc est de développer un algorithme pour prendre en compte les incertitudes des données de la base d'apprentissage d'un réseau de neurones. Ce travail s'inscrit dans le contexte d'un projet d'estimation dynamique de l'état d'un procédé d'extraction liquide-liquide. En utilisant un simulateur qualifié du procédé et des mesures de suivi lors de son exploitation, il est possible d'estimer les paramètres opératoires et connaitre ainsi l'état du procédé. Cependant ces mesures sont entachées d'incertitudes et il est nécessaire de réconcilier les données pour obtenir le meilleur jeu de données à fournir au simulateur. Un réseau de neurone convolutifs (CNN) permettant d'inverser le simulateur est en développement (à partir des sorties mesurées, on peut être capable d'estimer les entrées à fournir au simulateur). L'objectif est d'évaluer l'impact des incertitudes de mesure sur la construction de ce réseau de neurones. La première étape sera de propager les incertitudes des mesures d'entrée à travers le simulateur à l'aide de la plateforme Uranie, développée par le CEA ISAS. Cette connaissance sera alors intégrée dans la boucle d'apprentissage du réseau de neurones. L'impact de ces incertitudes sur les résultats du réseau de neurones doit être évalué pour fiabiliser l'estimation de l'état du procédé par le réseau de neurones. A travers ce projet, nous sommes au cœur de la thématique du contrôle de procédés complexes par la simulation.

Chercheur en intelligence artificielle appliquée à la microfluidique autonome

Cette offre de postdoctorat fait partie du projet 2FAST (Fédération de Laboratoires Fluidiques Autonomes pour Accélérer la Conception de Matériaux) du PEPR DIADEM, qui vise à automatiser complètement la synthèse et la caractérisation en ligne de matériaux à l’aide de puces microfluidiques « orchestrées ». Ces techniques offrent un contrôle précis et tirent parti des avancées numériques pour améliorer les résultats de la chimie des matériaux. Cependant, la caractérisation complète des nano/micro-matériaux à cette échelle reste un défi en raison de son coût et de sa complexité. 2FAST ambitionne d’exploiter les progrès récents dans l'automatisation et de l'instrumentation des plateformes microfluidiques, afin de développer des puces microfluidiques interopérables et automatiquement pilotées permettant une synthèse contrôlée de nanomatériaux. Plus précisément, l'objectif est d'établir une preuve de concept pour une plateforme de réacteur microfluidique/millifluidique à haut débit pour la production continue de nanoparticules de métaux nobles. Des boucles de rétroaction gérées par des outils d’intelligence artificielle contrôleront la progression de la réaction à partir d’informations acquises en ligne par des techniques spectrométriques (UV-Vis, SAXS, Raman). Le postdoctorat proposé porte sur l’ensemble des travaux en intelligence artificielle associés à ces développements, à savoir : i) la conception de boucles de rétroaction, ii) la création d'une base de données de signaux adaptés à l'apprentissage automatique, iii) la mise en œuvre de méthodes d'apprentissage automatique pour connecter les différentes données et/ou piloter les dispositifs microfluidiques autonomes.

Modèle de rupture d'agglomérat et homogénéisation par simulations DEM : Calibration avec des micro-compressions tomographiques dans la ligne de faisceau de rayons X Soleil

Le processus de fabrication de la céramique de référence comprend trois étapes principales : le broyage, le pressage et le frittage. Le compactage des granulés pendant le pressage repose sur trois étapes principales de densification : le réarrangements par déplacement, le compactage par déformation et l'agglomération des fractures par compression. Ce projet de recherche vise à explorer l'influence de l'étape de pressage sur le comportement de la microstructure pendant le processus de frittage. L'étude porte sur une poudre composée d'agglomérats dont la microstructure est basée sur un mélange homogène de TiO2-Y2O3, TiO2 et Y2O3 sont respectivement utilisés comme substituants pour UO2 pour PuO2. Ces agglomérats cassable sont constitués de particules élémentaires incassables, synthétisés par granulation cryogénique (CGSP) [1].
Des études récentes menées sur la ligne Anatomix du synchrotron Soleil [2] ont validé les résultats des micro-compressions tomographiques, en accord avec la théorie de Kendall (Fig. 1). Les expériences comprenaient des essais de micro-compression cyclique unidirectionnelle sur des agglomérats soumis à un simple cycle de charge et de décharge jusqu'à la rupture.
Les post-traitements tomographiques ont permis de mieux décrire la porosité, et d'appréhender l'initiation et la propagation des fissures. Plusieurs études de simulation DEM ont également été utilisées pour explorer (modéliser ?) le comportement des agglomérats sous chargement dynamique ou quasi-statique avec et sans rupture, sans toutefois calibrer complètement le modèle de rupture [3], [4], [5].

Top