Description de l’évolution de la taille de grain et des densités de dislocations lors de la consolidation des aciers ODS
Les aciers renforcés par une dispersion d’oxydes nanométriques (généralement désignés aciers ODS) sont envisagés notamment comme matériau de gainage combustible des réacteurs de 4ème génération. Ces matériaux sont à l’heure actuelle élaborée classiquement par métallurgie des poudres. L‘évolution de la microstructure lors de l’élaboration n’est pas encore bien décrite. Des travaux récents menés au laboratoire ont porté sur l’évolution de la nano-précipitation lors de l’élaboration. L’objectif du post-doctorat est donc d’affiner la description de cette évolution, plus particulièrement vis-à-vis de la taille de grain et de la densité de dislocations. Ce sujet couple une approche expérimentale, aux travers d’analyses en microscopie électronique et en diffraction des rayons X, et une approche numérique, visant à définir une méthode optimisée pour le traitement de l’évolution des dislocations.
Stabilité sous irradiation de l'interface oxyde / métal d'alliage d'aluminium 6061-T6 traitée par oxydation anodique
L’alliage d’aluminium 6061-T6 a été utilisé par la fabrication des composants principaux du cœur du réacteur Jules Horowitz (RJH) en raison de sa bonne résistance à la corrosion, de ses bonnes propriétés mécaniques et de sa haute transparence aux neutrons. Afin d’améliorer la résistance à l’usure et à l’oxydation, certaines pièces subissent un traitement de surface appelé Oxydation Anodique dure (OAd) qui permet de forcer la croissance d’une couche d’oxyde qui renforce les propriétés tribologiques.
Sous irradiation, les structures du cœur du RJH sont soumises à un fort flux de neutrons qui modifie la microstructure et les propriétés de l’alliage, les neutrons rapides induisent des cascades de déplacements d’atomes et créent des défauts ponctuels qui se regroupent sous forme d’amas pour former des boucles de dislocation et des amas lacunaires tridimensionnels. Ces amas durcissent l’alliage et induisent un gonflement macroscopique. Dans l’alliage métallique d’aluminium 6061-T6, on observe également une dissolution des nano-précipités préexistants et la re-précipitation des éléments sous une forme hors équilibre. L’oxyde (Oad) est également sujet à des évolutions microstructurales sous irradiation (densité de boucles après irradiation, gonflement, amorphisation) mais il a néanmoins fait l’objet d’un nombre plus limité d’études.
Cette étude postdoctorale vise donc à caractériser la microstructure de la couche OAd, son évolution sous irradiation et sa résistance mécanique avant et après irradiation.
Etude in-situ résolue en temps, par diffraction des rayons X sous rayonnement synchrotron, des évolutions structurales au sein d’un alliage de zirconium oxydé à haute température
Dans certaines situations accidentelles hypothétiques dans les réacteurs nucléaires à eau pressurisée (REP), la gaine en alliage de zirconium des crayons combustibles, qui constitue la première barrière de confinement des produits radioactifs, peut être exposée durant quelques minutes à de la vapeur d’eau à haute température (jusqu’à 1200°C), avant d’être refroidie puis trempée à l’eau. Le matériau de gainage subit alors de nombreuses évolutions structurales et métallurgiques. Afin d’étudier ces évolutions structurales de façon précise, une première campagne d’expériences a été effectuée sur la ligne BM02 de l’ESRF sur un four prototype permettant de contrôler parfaitement l’atmosphère et la température. Deux taches seront confiées au candidat : continuer et finir les dépouillements de la première expérience (détermination de fraction de phase, de contraintes résiduelles…)et préparer une nouvelle proposition d’expériences complémentaires pour mi 2020.
Etude et réalisation de composites C/SiC
Nous recherchons, pour différentes applications, des matériaux qui possèdent des propriétés mécaniques élevées à haute température (1000°C ou plus) et résistant à l’oxydation. La famille des matériaux Composites à Matrice Céramique (CMC), en particulier les C/SiC, semble la plus pertinente vis-à-vis de notre besoin. Cependant, il est nécessaire de mener des études pour déterminer les solutions les plus performantes parmi la grande variété des types d’architectures fibreuses et des microstructures de matrice possibles, tout en tenant compte des contraintes liées aux procédés disponibles et aux géométries visées. Ces travaux seront menés en relation avec d’autres laboratoires du CEA.
Simulation des matériaux par dynamique d’amas
Les alliages utilisés dans les applications nucléaires subissent une irradiation aux neutrons, laquelle introduit un grand nombre de défauts lacunaires et interstitiels. Au cours du temps, ces défauts migrent, se recombinent et s’agglomèrent pour former des amas. Ce phénomène physique affecte les propriétés mécaniques des aciers et conduit à sa fragilisation. Dans ce contexte, il est important de pouvoir simuler l’évolution de la microstructure à l’aide de la méthode de dynamique d’amas. Malheureusement, cette méthode devient inefficace lorsque plusieurs éléments d’alliage doivent être pris en compte. La difficulté provient du nombre trop élevé de variables de simulation à gérer. Le projet a pour objectif d’optimiser l’efficacité du code sur une architecture parallèle distribuée en faisant appel à des fonctions dédiées, vectorielles et matricielles, de la bibliothèque SUNDIALS. Cette librairie est utilisée pour intégrer l’équation différentielle ordinaire décrivant les réactions entre amas. Un autre aspect du travail, plus théorique, consistera à reformuler le problème non-linéaire de recherche de zéros du schéma d’intégration en tirant profit de la réversibilité des réactions chimiques. Cette propriété doit permettre la mise en oeuvre de solveurs directs et itératifs pour matrices creuses, symétriques et définies positives. Un axe de recheche explorera la combinaison des approches directs et itératives, en utilisant une méthode de factorisation multi-frontale de type Cholesky pour préconditionner des itérations de gradient conjugué.
Modélisation multi-Echelle de la Ségrégation Induite par iRradiation
L’irradiation crée dans les matériaux un excès de lacunes et d‘auto-interstitiels, qui s’éliminent en se recombinant ou en s’annihilant sur les défauts étendus (surfaces, joints de grains, dislocations). Elle maintient ainsi des flux de défauts ponctuels vers ces puits. Dans le cas d’un transport préférentiel d’un des composants d’un alliage, une variation de la composition chimique apparaît à proximité des puits: c’est la Ségrégation Induite sous Irradiation (SII). Sa modélisation nécessite une bonne description des propriétés de l’alliage: ses forces motrices (dérivées de la thermodynamique) et ses coefficients cinétiques (constantes d’Onsager). L’objectif de ce projet est de combiner (i) des modèles atomiques (simulations Monte Carlo et champ moyen autocohérent), ajustés sur des calculs ab initio et qui permettent d’accéder aux coefficients d’Onsager et aux forces motrices et (ii) la modélisation de type champs de phases qui permettra de décrire la cinétique sous irradiation à des échelles de temps et d’espace supérieures. On appliquera la méthode aux systèmes FeCu et FeCr, déjà modélisés à l’échelle atomique. La SII sera modélisée à proximité d’un joint de grains, puis à proximité d’une boucle de dislocations. On s’intéressera plus particulièrement à l’influence de la contrainte sur le phénomène.
Modélisation de la cinétique des amas de défauts interstitiels dans les métaux CC après l’implantation d’hélium.
Les matériaux de structure des réacteurs nucléaires subissent des conditions d’irradiation sévères qui peuvent modifier leurs propriétés mécaniques. Afin de pouvoir suivre la cinétique atomique qui mène à des structures complexes responsables du vieillissement de matériaux, il faut se tourner vers la simulation numérique. Dans le cadre de l’ANR EPIGRAPH nous allons combiner les techniques expérimentales et les calculs numériques pour mieux caractériser la cinétique des défauts interstitiels dans les métaux cubiques centrés. Nous avons récemment proposé une nouvelle structure tridimensionnelle périodique pour les amas d’interstitiels dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Afin de détecter ces amas expérimentalement, une idée est de les faire grandir après implantation d’hélium [2]. Cette démarche sera réalisée dans divers métaux CC dans le cadre du projet ANR EPIGRAPH, en collaboration avec Chimie ParisTech, GEMaC et LPS.
Dans ce projet, la tâche de modélisation comporte deux directions:
- Les calculs ab-initio, effectués par le postdoc, vont apporter les informations atomistiques sur la croissance des défauts d’irradiation.
- Les résultats des calculs ab-initio seront ensuite utilisés pour paramétrer un modèle cinétique basée sur la dynamique d’amas [3]. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts sur de temps longs.
Le travail de modélisation sera réalisé en étroite collaboration avec la partie expérimentale.
[1] M. C. Marinica, F. Willaime, J.-P. Crocombette, Phys. Rev. Lett. 108 (2012) 025501
[2] S. Moll, T. Jourdan, H. Lefaix-Jeuland, Phys. Rev. Lett. 111 (2013) 015503
[3] T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444 (2014)
Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée
Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.
Modélisation de l’évolution des amas d’interstitiels dans les métaux de structure cubique centrée après implantation d’hélium
Sous irradiation, les matériaux de structure des centrales nucléaires subissent une évolution de leurs propriétés mécaniques. Ces modifications résultent de la formation d’amas de défauts ponctuels tels que les cavités et les boucles de dislocation interstitielles. Comprendre les processus de formation de tels amas est donc un enjeu important pour la prédiction des propriétés des matériaux sous irradiation. Récemment, il a été montré par la théorie que des amas tridimensionnels, appelés amas C15, sont très stables dans le fer. Afin de détecter expérimentalement de tels amas, il est envisageable de les faire croître, comme cela a été fait pour les boucles de dislocation après implantation d’hélium. Cette approche sera menée expérimentalement dans différents métaux cubiques centrés dans le cadre de l’ANR EpigRAPH, en collaboration avec Chimie Paris Tech, le GEMaC et le LPS.
Dans ce projet, les tâches suivantes de modélisation seront effectuées par le post-doc :
- Des calculs de structure électronique seront réalisés de manière à obtenir les propriétés énergétiques des défauts ponctuels et de leurs amas dans les métaux cubiques centrés envisagés dans le projet
- Ces données seront ensuite utilisées pour paramétrer un modèle cinétique de type dynamique d’amas. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts ponctuels sur des temps longs.
Modélisation multi-échelle de la structure et la mobilité des petits amas de défauts dans les métaux
L’irradiation par des particules de haute énergie provoque dans les matériaux cristallins la formation de défauts lacunaires et interstitiels. En migrant dans le matériau ces défauts peuvent se recombiner avec leur anti-défaut, s’éliminer sur des défauts étendus (surface, dislocation, joint de grain) ou former des amas de défauts. La structure et la mobilité des amas d’auto-interstitiels est une question encore largement ouverte. Début 2012 nous avons proposé une nouvelle structure tridimensionnelle périodique pour ces amas dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Ils constituent ainsi un nouvel élément important à prendre en compte dans les prévisions des évolutions microstructurales des matériaux à base de fer sous irradiation. Le principal enjeu maintenant est d’éclaircir plusieurs questions ouvertes : la stabilité relative des nouveaux amas en comparaison avec les amas traditionnels pour les tailles intermédiaires, les chemins de réaction qui relient les amas traditionnels aux C15, la cinétique d’interaction des nouvelles amas avec les boucles de dislocations, les effets de température finie etc.