Conception du packaging des modules PV de haute performance

La durée de vie de nouvelles générations de modules photovoltaïques est de 25-30 ans en conditions externes. Le packaging joue un rôle critique pour répondre à ses exigences de fiabilité et de durabilité. Les cellules solaires sont protégées par du verre en face avant et des couches plastiques complexes sont employées comme encapsulant en face avant et arrière, en contact avec la face arrière. Les encapsulants ont de multiples rôles; forment une couche barrière contre l’humidité, oxygène, radiation ultra-violet, assurent l’isolation électrique et la protection mécanique des plaquettes de silicium fragiles tout en gardant une transparence optique élevée. Le procédé de fabrication industriel des modules est la lamination, qui impose des exigences supplémentaires pour la formulation des encapsulants.
L’objectif de ce post-doc est d’établir une corrélation entre les propriétés des matériaux, leur mise en forme et le comportement thermo-mécanique des modules innovants avec des cellules hétérojonctions, back-contact ou silicium/pérovskite tandems. La caractérisation avancée des polymères sera étroitement déployée lors de cette étude utilisant notamment DSC, DMA, adhésion, ATG, WVTR, extraction Soxhlet etc. La corrélation entre les paramètres de la lamination et la tenue mécanique des panneaux constituera un des axes majeurs de recherche. Le choix des encapsulants et de tous les matériaux sera fortement guidé par l’éco-conception pour réduire l’impact environnementale du packaging et augmenter la recyclabilité, et renforcer le ré-emploi des plastiques. Ce post-doc s’inscrit dans une collaboration européenne sur le sujet.

Développement de matériaux silicium résistants aux irradiations et intégration dans des cellules photovoltaïques pour applications spatiales

Historiquement, le photovoltaïque (PV) s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires multi-jonctions, basées sur un empilement de matériaux III-V, ont progressivement remplacé le silicium (Si), bénéficiant de performances et de tenues aux irradiations électrons/protons supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût (€/W Si ~ III-V/500), émergence de nouvelles technologies Si qui présentent des rendements élevés sur Si de type p… Dans l’espace, les cellules solaires PV sont exposées aux rayonnements cosmiques, notamment aux bombardements par des protons et électrons. Ces irradiations affectent les performances des cellules Si, essentiellement en raison de la formation de défauts volumiques recombinants pour les porteurs de charge. Afin de favoriser l’utilisation de cellules Si dans l’environnement spatial, il est donc essentiel d’améliorer leur résistance aux irradiations. Il s’agit du principal enjeu de ce projet de post-doc. Pour cela, les travaux vont tout d’abord se concentrer sur l’élaboration d’un nouveau matériau silicium, avec des propriétés compositionnelles lui conférant une résistance accrue aux irradiations par les électrons. Plus précisément, le matériau contiendra des éléments limitant la formation de défauts volumiques sous irradiations, et développant des effets de passivation électrique. Les propriétés électroniques de ce matériau seront évaluées et analysées avant et après irradiation. Dans un second temps, des cellules haut rendement à hétérojonction seront élaborées à partir de ce silicium inédit, et leurs performances électriques évaluées et analysées avant et après irradiation. Les développements pourront être appuyés par des simulations numériques, effectuées à l’échelle des dispositifs PV.

Modélisation des défauts sur les réseaux DC basse tension dans les bâtiments, vers des algorithmes de détection de défauts

Le développement de l'usage des énergies renouvelables et du stockage de l'énergie ainsi que les progrès faits par les composants d'électronique de puissance amènent progressivement à repenser les architectures des réseaux électriques de distribution basse tension dans les bâtiments. Ces évolutions permettront un développement des réseaux à courant continu ou mixtes alternatif-continu alimentés par des convertisseurs statiques. Sur ce type de réseau, les défauts deviennent plus difficiles à gérer du fait des sources de puissance utilisées. En effet, les signatures habituelles du court-circuit ou de la surcharge ne sont plus les mêmes et vont varier en fonction des convertisseurs utilisés et de l'architecture du réseau. Pour cela, il convient d'identifier, par la simulation, les topologies de protection les plus adaptées (par les régimes de neutre par exemple) et d'identifier les signatures types des défauts. In fine, ces signatures permettront de disposer de dispositifs de détection optimums.

Irradiations de cellules silicium haut rendement pour le spatial

Historiquement, le photovoltaïque s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires III-V multi-jonctions ont progressivement remplacé le silicium, bénéficiant de performances et tenue aux irradiations supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût & performante (type-p > 26% AM1.5g). Cependant, pour les cellules Si les méthodes et séquences de vieillissement sous irradiations classiques (ECSS) sont moins appropriées. La littérature datant principalement des années 1980 – 2000, il faudra revisiter la thématique avec les cellules Si dernière génération à contacts passivés (élaborées à l’INES) et les moyens uniques d’irradiation double faisceau du CEA (plateforme JANNuS du CEA Saclay).
Ces travaux s’inscrivent dans le cadre du projet SiNRJs à l’interface entre deux directions du CEA, sur les thématiques photovoltaïques spatial & irradiations matériaux. L’approche scientifique et technologique adoptée: 1. Fabrication de cellules Si à contacts passivés (HeT et/ou Poly-Si) d’épaisseur variable 2. Caractérisations optoélectroniques des propriétés des cellules avant irradiations (IV AM1.5/AM0, EQE, etc.) 3. Irradiations protons des cellules et échantillons, caractérisations in situ (Raman et Electroluminescence) 4. Caractérisations ex situ des propriétés optoélectroniques des cellules après irradiations (IV AM1.5/AM0, EQE, etc) 5. Analyse et synthèse des résultats. Scientifiquement, les verrous à lever concernent donc la compréhension des mécanismes/dynamiques de création/guérison de défauts sous cette double excitation électronique et balistique.

Système de charge solaire décentralisé pour la mobilité durable en Afrique rurale

Une nouvelle station de recharge solaire autonome (SASCS) sera déployée en Éthiopie. Étant donné que 45 % de la population de l'Afrique subsaharienne n'a pas d'accès direct aux réseaux électriques et que l'infrastructure nécessaire pour exploiter de manière fiable d'autres sources d'énergie est largement inexistante pour bon nombre de ces populations en Éthiopie, l'introduction de la SASCS dans certaines communautés rurales du pays est un effort nécessaire. Il pourrait revigorer le secteur agricole des communautés et soutenir ceux dont l'emploi est lié à l'agriculture. Un SASCS pourrait également servir à intégrer les énergies renouvelables dans le mix électrique existant du pays. Le CEA INES agira en tant que partenaire-conseil pour la conception et la mise en œuvre de la solution (les batteries de seconde vie, le solaire seront étudiés). En outre, en raison de l'expertise établie du CEA INES dans l'installation d'outils solaires au sein de diverses communautés, l'initiative fournira également un savoir-faire pour l'installation du SolChargE en Ethiopie et coopérera à l'organisation d'ateliers pour les étudiants et les techniciens employés par le projet.

Développement de panneaux solaires flexibles pour applications spatiales

Les panneaux solaires utilisés conventionnellement pour alimenter en énergies les satellites sont encombrants et reliées entre eux par de lourdes pièces mécaniques. Plus légers et plus compacts, les panneaux solaires flexibles consistent en une peau souple servant de support aux cellules solaires qui transforment la lumière en électricité. Etant flexibles, les panneaux solaires pourraient s’enrouler ou se plier, sans l’aide de moteurs, les rendant ainsi moins lourds et coûteux que les panneaux solaires conventionnels.
D’un autre côté, le secteur des satellites est en train de migrer d’une configuration mono satellitaire à une configuration de constellation de satellites. Ces dernières années, le besoin de production de masse de satellites légers s’est accru. Les fabricants de panneaux solaires sont mis à l’épreuve sur leur capacité à affronter ces nouveaux besoins en termes de capacité de production et d’adaptabilité de leurs lignes de production. C’est exactement sur ces points que le photovoltaïque spatial peut apprendre du photovoltaïque terrestre.
Pour affronter ces nouveaux défis, le Liten a commencé à travailler sur ces sujets il y a plus de deux ans. Dans le cadre de ce post-doc, nous proposons de développer une architecture innovante de panneau solaire flexible en utilisant des procédés de fabrication à fort potentiel industriel. Nous cherchons pour cela un candidat avec une forte expérience dans le domaine des polymères et de leur mise en œuvre, avec aussi une expérience en mécanique. Toute expérience antérieure dans le photovoltaïque sera avantageusement considérée.

Gestion optimale d’un système énergétique tertiaire

Dans le cadre de la solution ciblant les sites tertiaires ou résidentiels qui consomment et produisent de l’énergie électrique, l’objectif est d’optimiser l’utilisation de leur énergie en fonction de critères économiques ou contraintes réseaux (adaptation de la demande) sans perturbation du confort des utilisateurs. L’objet de ce poste est de développer une solution de « gestion optimale de l’utilisation du solaire dans un bâtiment tertiaire intégrant des bornes de recharge VE et du stockage ». Selon trois objectifs : - Minimiser le cout de la consommation en fonction d’un tarif dynamique
- Maximiser l’utilisation de l’énergie solaire
- Minimiser la puissance appelée du réseau. Tout en prenant en compte le LCOS (Levelised Cost Of Storage) de la batterie. Le Post-Doc devra contribuer et participera à: - Spécification de cahier des charges d’un système tertiaire - Développement des algorithmes de gestion d’un système tertiaire - Déploiement et test de la solution proposée.

Simulation de cellules solaires silicium à partir de matériau de type n : modélisation et optimisation de l’architecture.

Des technologies de fabrication de cellules à base de silicium de type n sont en cours de développement à l’INES. Le travail de simulation des cellules photovoltaïques permet d’accélérer le développement de nouvelles filières à plusieurs niveaux : interprétation physique des résultats de caractérisation, aide à la conception des dispositifs, optimisation des procédés et exploration de concepts originaux. Le sujet du post-doc est centré sur l’étude des modèles semi-empiriques pour les matériaux et les procédés utilisés pour les cellules de type n. Ces briques élémentaires seront mises en oeuvre dans un modèle complet résultant de leur assemblage de type circuit avec un outil de simulation muulti-échelle. Au final, un tel outil permettra d’optimiser la structure géométrique de l’émetteur de type p, de l’efficacité de collecte des porteurs de la face arrière et de la géométrie des contacts électriques métalliques.

Gestion Système Multi-Agent optimale des réseaux de chaleur intégrant du stockage thermique

Le travail proposé vise à contribuer au développement des premières briques d’une plate-forme logicielle basée sur les environnements Modelica/JADE (java) permettant de modéliser, simuler et optimiser le pilotage des réseaux de chaleur grâce à l’utilisation de modèles de stockages thermiques compatibles: spécifier les interfaces des données nécessaires et suffisantes pour le contrôle des stocks du réseau, implémenter les éléments contrôlés dans le réseau de chaleur, de définir des modèles simplifiés des principaux composants du réseau de chaleur à intégrer dans les agents(production, distribution/stockage, consommation), et de concevoir des modèles prédictifs de consommation et de production afin de pouvoir anticiper l’évolution du système. L’évaluation des performances se fera sur le cas test construit dans l’environnement de simulation Modelica.

Dispositif d’analyse in situ par LIBS de milieux hostiles hautes températures

Le projet de recherche proposé vise à mettre au point un dispositif d’analyse in situ par la technique LIBS de milieux liquides en conditions extrêmes comme les matériaux à haute température de fusion ou les métaux liquides hautement volatils utilisés pour le développements de la production d’énergies décarbonnées. Le projet met en œuvre deux équipes du CEA spécialisées dans l’instrumentation LIBS, le développement analytique et les milieux à haute température.
A haute température, les métaux fondus présentent une forte réactivité en surface conduisant à des processus d’oxydation, nitruration... L’analyse non intrusive de cette surface par LIBS conduit à des résultats non représentatifs de la composition du métal fondu. Dans ce projet, un nouveau concept d’analyse intrusive en volume, basé sur un brassage mécanique couplé au dispositif d’analyse par LIBS est préconisé. Ce concept, protégé par un brevet CEA, permet le renouvellement de la surface du métal en fusion en maintenant une meilleure stabilité de la surface à analyser. Le projet aura pour objectif de mettre au point un démonstrateur dédié à l’analyse de tels milieux par LIBS, qui sera validé pour l’analyse d’impuretés dans le silicium liquide (T > 1450 °C) pendant les procédés de purification et de cristallisation pour les applications solaires photovoltaïques. A l’issue du projet, le système pourra être adapté puis testé au sein des équipes de la DEN pour l’analyse in situ de la pureté du sodium liquide, fluide caloporteur des réacteurs nucléaires de génération 4.

Top