VALERIAN: simulation du transport d'électrons pour les modules les modules ITkPix d'ATLAS

Une description précise du transport des électrons et des photons dans la matière est cruciale dans plusieurs domaines phares du CEA, notamment la radioprotection et l’instrumentation nucléaire. Leur validation nécessite des études paramétriques dédiées et des mesures. Étant donné le peu de données expérimentales publiques, des comparaisons entre codes de calcul sont aussi utilisées. L’enjeu pour les années à venir est une qualification de ces codes dans un large domaine d'énergie, certains écarts entre leurs résultats ayant été identifiés lors d’études préliminaires du SERMA faisant intervenir le transport couplé de neutrons, photons et électrons. Le projet VALERIAN consiste à saisir l’opportunité créée par une campagne de prise de données unique en son genre prévue en 2025-2026 à l’IRFU (DRF) pour mieux caractériser ces écarts. En effet, l’IRFU s’est engagé à contrôler au moins 750 modules à pixels pour le nouveau trajectographe de l’expérience ATLAS, dans le cadre de la jouvence des grands détecteurs du CERN. De nombreuses mesures avec des sources bêta seront réalisées en 2025-2026 pour la qualification de ces modules.

Étude de la formulation Vitesse-Vorticité-Pression pour discrétiser les équations de Navier-Stokes.

Les équations de Navier-Stokes incompressibles sont parmi les modèles les plus
utilisés pour décrire les écoulements d’un fluide newtonien (c’est-à-dire un fluide dont la viscosité est indépendante des forces extérieures appliquée au fluide). Ces équations modélisent le champ de vitesse et le champ de pression du fluide. La première des deux équations n’est autre que la loi de Newton, tandis que la seconde découle de la conservation de la masse dans le cas d’un fluide incompressible (la divergence de la vitesse est nulle). L’approximation numérique de ces équations est un véritable défi en raison de leur caractère tridimensionnel et instationnaire, de la contrainte de divergence nulle et enfin de la non-linéarité du terme de convection. Il existe différentes méthodes de discrétisation, mais pour la plupart de ces méthodes, l’équation de conservation de la masse n’est pas satisfaite exactement. Une alternative consiste alors à introduire comme inconnue supplémentaire la vorticité du fluide, égale au rotationel de la vitesse. On réécrit alors les équations de Navier-Stokes avec trois équations. Le post-doc consiste à étudier d'un point de vue théorique et numérique cette formulation et de proposer un algorithme de résolution efficace, dans le code TrioCFD.

Traitement de signaux de détecteurs gamma ultra-rapides par Machine Learning

Au sein du projet ANR AAIMME dédié à l'imagerie médicale par Tomographie à Émission de Positrons (TEP), nous proposons un post-doctorat de 24 mois qui s’intéressera principalement au traitement des signaux du détecteur ClearMind conçu au CEA-IRFU. Les développements du détecteur ont été effectués dans l’objectif d’obtenir une datation précise des interactions ayant lieu dans la zone sensible. Ils consistent en des détecteurs scintillateurs PbWO4 couplés à un photomulitplicateur dans une galette à microcanaux, dont les signaux sont numérisés par des modules d’acquisition rapide SAMPIC. L’intérêt principal de cette conception réside en l’exploitation des photons rapides Cherenkov et des photons de scintillation pour reconstruire le plus précisément possible les interactions dans le cristal.
Une des principales difficultés réside dans l’analyse des signaux produits par le détecteur : la complexité et l’intrication des signaux nécessitent un traitement dédié.
L’objectif de ce post-doctorat est donc d’élaborer des algorithmes de Machine Leaning de confiance afin de reconstruire les paramètres de l’interaction gamma dans le détecteur avec la plus grande précision possible à partir des signaux détecteurs.

Etude du comportement sismique des tuyauteries via des modèles mécaniques de différents niveaux de fidélité

Les tuyauteries font partie des équipements pour lesquels une attention particulière est portée dans le cadre du réexamen de sûreté ou de la conception des installations nucléaires. Les systèmes de tuyauterie des installations nucléaires sont conçus conformément aux codes, normes et réglementations, pour résister aux chargements qui se produisent ou pourraient se produire pendant la durée de vie nominale d’une installation. Ces systèmes doivent donc être conçus pour résister aux chargements accidentels tels que les séismes. Le retour d’expérience montre que les tuyauteries se comportent généralement bien en cas de séisme. Lorsque des défaillances sont observées, elles sont plutôt dues à un mouvement important des ancrages, à des matériaux fragiles, à des joints non soudés, à la corrosion, à des défaillances des supports de tuyauterie ou à des interactions sismiques. En pratique, pour pouvoir estimer le comportement sismique au-delà du niveau de dimensionnement et les risques de défaillance associés, l’ingénieur peut mettre en œuvre des modèles numériques impliquant des degrés de raffinement variés en fonction des besoins. Cette étude consiste à faire un bilan sur les capacités de modélisation numérique des tuyauteries sous séisme. Pour des raisons de temps de calculs, se sont souvent des modélisations globales de type poutre qui sont plébiscitées, en considérant des lois de matériaux simplifiées comme des lois de matériaux bilinéaires avec écrouissage cinématique. On connait les limitations « théoriques » de ces modélisations mais il est difficile d’avoir les idées claires concernant leurs limites d’applicabilité effectives en fonction du niveau de sollicitation et du dommage visé. Pour faire ce bilan, on propose d’interpréter, à l’aide de différents modèles numériques impliquant différents degrés de fidélité, les résultats de la campagne expérimentale menée par le BARC et qui a servi au benchmark MECOS (MEtallic COmponent margins under high Seismic loads).

Mise au point, validation métrologique et essais en milieu extérieur d'une unité de mesure Raman/FO multitrack dédiée à la sécurité de futures stations cryogéniques de distribution d’hydrogène liquide

Contexte : Les usages domestique et industriel de l’hydrogène liquide comme carburant du futur nécessitent de définir un code de sécurité adapté. Actuellement, les critères de séparation des réservoirs ont été définis par anticipation selon une approche conservatoire. Il est donc nécessaire de réaliser des expériences en vraie grandeur (épandages) afin d’alimenter des codes de calculs et bâtir une normalisation pertinente. Ces expériences requièrent la mise en œuvre d’une instrumentation adaptée à la mesure de tous les gaz présents en espace libre (O2, N2, H2O, H2) afin d’établir un relevé de pressions partielles au cours de chaque essai, corrélé aux autres moyens de mesure mis en place (thermométrie, catharométrie, PIV, BOS,…).
Mission : Dans le contexte d’un projet ANR-PEPR (ESKHYMO) géré par le CEA Liten, une unité de mesure spectrométrique Raman/FO Multitrack sera mise au point conjointement par le CEA List et le CEA DES sur la base d’un dispositif existant. La mesure Raman est multi-élémentaire, multi-track (une seule unité de mesure pour plusieurs sondes), non-déflagrante, et délivre une mesure autonormalisée à une espèce de référence (le plus souvent l’azote à la pression atmosphérique). L’unité de mesure Raman/FO comportera un laser, un spectromètre associé à une caméra CCD scientifique et un circuit de fibres optiques permettant le déport de la mesure. La conception des sondes Raman/FO sera également basée sur une réalisation existante au CEA que l’on cherchera à miniaturiser en vue d’un déploiement en conditions de terrain. Quatre sondes Raman/FO seront réalisées puis ensuite étalonnées en air (enceinte climatique) et en hydrogène (tube à choc ou chambre à vide) au CEA DES DM2S à Saclay. Finalement, le dispositif final sera déployé sur site d’essai pour procéder à des mesures multigaz lors des expériences d’épandage, en partenariat avec l’industriel Air Liquide et les organismes accréditeurs (INERIS).
Compétences : Optique, laser, fibres optiques

Comportement sismique d’un pont roulant

Les ponts roulants font partie des équipements d’installations industrielles pour lesquels il convient de porter une attention particulière. Ils sont en effet généralement situés en partie haute des ouvrages de génie civil et donc potentiellement soumis à des niveaux importants d’accélération en cas de séisme du fait de l’amplification induite par la structure porteuse. En conséquence, ils sont potentiellement sujets à des efforts significatifs et peuvent être la source d’efforts importants sur la structure de supportage. L’enjeu pour la sûreté est de se prémunir face au risque d’agression avec des équipements sensibles, en cas d’instabilité des éléments constitutifs du pont ou de la structure de supportage. Cette étude s’inscrit dans la continuité de deux précédentes campagnes d’essais qui ont été menées sur la table vibrante Azalée du laboratoire EMSI sur une maquette de pont roulant. Elle vise à fournir des modèles numériques validés de ponts roulants. Deux axes de recherche sont envisagés. Le premier axe consiste à compléter les campagnes d’essais « historiques » par des essais statiques sur la maquette pour justifier le recalage des modèles numériques. Le second axe consiste à exploiter, par confrontation essais/calculs, l’ensemble des essais qui ont été réalisés dans le cadre d’une campagne d’essais précédente et qui ont été réalisés à des fins d’analyse statistique.

Effets des tremblements de terre sur les installations souterraines

Le Centre industriel de stockage géologique (Cigéo) est un projet de centre de stockage géologique profond de déchets radioactifs à construire en France. Ces déchets seront placés dans des colis scellés dans des tunnels conçus à 500 mètres de profondeur. Les scellements sont constitués d'un mélange de bentonite et de sable qui présente une forte capacité de gonflement et une faible perméabilité à l'eau. Dans le cadre de la démonstration de la sûreté à long terme du dépôt, il doit être démontré que les structures de scellement peuvent remplir leurs fonctions sous chargements sismiques pendant toute leur durée de vie. Afin de garantir ce futur dépôt de déchets nucléaires, le CEA et l'Andra collaborent pour travailler sur les potentiels défis scientifiques et techniques.
La réponse des scellements souterrains aux séismes est complexe en raison de l'évolution spatiale et temporelle des propriétés hydromécaniques des milieux environnants et de la structure elle-même. Une modélisation précise du comportement nécessite donc un code numérique multiphysique couplé pour modéliser efficacement les réponses sismiques de ces structures souterraines pendant leur durée de vie estimée à 100 000 ans.
La recherche proposera donc une évaluation des performances de la modélisation numérique séquentielle et parallèle par éléments finis pour l'analyse sismique des installations souterraines profondes. Ensuite, elle effectuera un échantillonnage de données synthétiques pour tenir compte des incertitudes liées aux matériaux et, sur la base des résultats obtenus lors de l'évaluation précédente, elle effectuera une analyse de sensibilité en utilisant une méthode FEM ou un processus de métamodélisation. Enfin, les résultats et les connaissances acquises dans le cadre de ce projet seront traités et interprétés afin de fournir des réponses aux besoins industriels.

Conception et validation de schémas de calcul neutroniques innovants pour les coeurs de réacteurs nucléaires sans bore soluble

Dans le cadre du projet NUWARD™, le CEA est en charge du développement et de la validation des schémas de calcul neutroniques de référence en appui à la conception du réacteur.
Au sein du SERMA/LPEC, le candidat participera aux développements de schémas de calcul innovants dédiés au coeur du réacteur NUWARD™ mettant en œuvre des modélisations avancées du code déterministe de nouvelle génération APOLLO3®, ainsi qu'à la réalisation des études pour la vérification et la validation des schémas développés.

Convection naturelle à haut Rayleigh pour la Securité des réacteurs: 2ème année

Le postdoc est associé à la deuxième année du projet CORAYSE. La sécurité des réacteurs de type SMR est basée sur des systèmes passifs : le réacteur est placé dans une piscine où la chaleur résiduelle est évacuée par convection naturelle en cas d’accident. Toutefois à ce jour on n’appréhende pas, ni par le calcul ni sur la base d’expériences, l’échange thermique entre le réacteur et l’eau, car la convection naturelle n’a fait l’objet de corrélations d’échange thermique que jusqu’à des nombres de Rayleigh Ra de 10^12 (le nombre de Rayleigh Ra décrit le rapport entre le transport par convection naturelle et le transport diffusif). Pour un SMR, ce Ra peut dépasser 10^16. La maitrise par des calculs numériques et des expériences est donc un enjeu majeur de sécurité. Un tel objectif nécessite toutefois que plusieurs défis soient relevés :
• Un défi numérique : la capacité du code à modéliser de manière suffisamment précise et dans un temps raisonnable des écoulements turbulents à très haut nombre de Rayleigh est encore du domaine de la recherche. La simulation numérique aux plus hauts Ra envisagés représente un défi en termes de temps calcul, nécessitant des simulations sur des calculateurs « exascale ». Une adaptation des codes existants à cette situation est donc indispensable.
• Un défi expérimental : au niveau de la validation du code, la réalisation d’une expérience représentative, dans laquelle un nombre de Rayleigh supérieur à 10^16 puisse être atteint, nécessite une expérience à l’échelle 1 (donc très onéreuse), ou bien une expérience avec un autre fluide – par exemple l’hélium liquide - dont les propriétés physiques (viscosité, dilatation thermique,…) permettront d’atteindre en laboratoire des Rayleigh comparables.

Modélisation CFD des mouvements de gaz en cavités salines

Storengy, société du groupe Engie, est l’un des leaders mondiaux en matière de stockage souterrain de gaz. Storengy opère en particulier des cavités salines de stockage de gaz naturel. Les cavités sont localisées dans des couches de sel gemme à environ 1km de profondeur ; elles ont un volume de plusieurs centaines de milliers de m3. Ces stockages souterrains assurent une réponse rapide aux pics de consommation de gaz et également à la modulation saisonnière de la demande. Ils contribuent aussi à la sécurité de la fourniture d’énergie en permettant de faire face aux défaillances temporaires de sources d’approvisionnement de gaz naturel.
Storengy SAS s’est tourné, courant 2019, vers le CEA pour avoir un appui sur ces aspects. Une étude intitulée « Modélisation du stockage de gaz (CH4 et H2) en cavités salines avec TrioCFD » s’est déroulée en 2020. Des premiers calculs pour des cavités parallélépipédiques (géométrie simplifiée) en VDF (différences finies) monophasique en régime incompressible et quasi-compressible ont été menés. Ceux-ci ont mis en évidence que le modèle quasi-compressible implémenté dans TrioCFD ne permettait pas de prendre en compte les effets de la stratification du gaz en cavité. Un nouveau modèle « weakly-compressible » a été développé afin de rendre compte de la spécificité des écoulements en cavité.
L'objectif est de poursuivre ces travaux et de développer une modélisation thermo-hydraulique sur la base du modèle TrioCFD du stockage d’hydrogène en cavité dans des cavités de forme réaliste et en tenant des conditions d’opération des cavités (phases d’injection et de soutirage). Les simulations seront, dans un premier temps, réalisées
en gaz sec en tenant compte des échanges thermiques avec le massif, puis de en prenant en compte des échanges de masse avec la saumure.

Top