Condensation d'air humide lors de l'accident de rupture de vide d'isolement sur un réservoir de LH2 (projet CHALIA)

L'hydrogène liquide devient de plus en plus le vecteur énergétique clé pour la décarbonisation industrielle dans le domaine de la mobilité lourde. Il est stocké à 20 K dans un réservoir à double paroi avec un vide isolant. Toute atteinte à l'intégrité de la paroi extérieure permettra à l'air chaud de pénétrer dans le vide isolant. L'azote, l'oxygène et la vapeur d'eau se condenseront, voire se désublimeront, sur la paroi froide du réservoir intérieur, transférant ainsi de la chaleur au cryogène, qui commencera à bouillir. Cette ébullition provoque une augmentation de la pression, entraînant l'ouverture des soupapes de sécurité afin d'éviter la rupture du réservoir. Afin de mieux comprendre ces phénomènes complexes, le CEA, le Centre de recherche collaborative Fenex et l'Université d'Australie occidentale ont soumis le projet CHALIA au Centre franco-australien pour la transition énergétique. Ce projet a été approuvé en octobre. Le poste de post-doctorant proposé par le CEA consiste à mettre en place une expérience analytique à l'aide d'un cryostat en verre existant afin d'étudier en détail les différents phénomènes et de mesurer les flux thermiques transmis au cryogène pendant les différentes phases de l'accident. Une approche progressive est proposée, commençant par l'entrée d'azote avant de passer à un mélange binaire (air synthétique) ou à un mélange ternaire (air humide). Le projet vise également à identifier et à quantifier les phases impliquées dans le processus à l'aide de diverses méthodes optiques. Les travaux seront menés en étroite collaboration avec des chercheurs de l'Université d'Australie occidentale, qui se concentreront sur la mise à l'échelle des résultats.

Algorithmes robustes de continuation pour la simulation par éléments finis de la fissuration dans des milieux hétérogènes complexes : application aux structures en béton armé

Les procédures de "path-following" (ou de continuation) sont utilisées pour décrire les réponses instables de structures présentant des phénomènes de snap-back ou snap-through. Ces méthodes consistent à adapter la charge externe au cours de la déformation afin de satisfaire une contrainte de pilotage, en introduisant une inconnue supplémentaire, le multiplicateur de charge. Plusieurs variantes existent selon la grandeur pilotée : combinaisons de degrés de liberté, mesures de déformation ou variables liées à la dissipation d’énergie.
En plus du suivi de réponses instables, un intérêt majeur de ces approches réside dans l’amélioration de la convergence des solveurs incrémentaux de type Newton, en réduisant le nombre d’itérations nécessaires. Ce gain compense souvent le coût supplémentaire lié à l’algorithme de continuation. Certaines formulations se sont révélées efficaces et simples à implémenter.
Cependant, aucun critère objectif ne permet encore de choisir la plus adaptée à la simulation de structures en béton armé, où coexistent plusieurs mécanismes de dissipation et une forte variabilité spatiale des propriétés du matériau.
Le travail postdoctoral proposé visera à développer des algorithmes de "path-following" robustes pour ces structures, à partir des recherches antérieures menées au CEA. Il comprendra une analyse critique des formulations existantes, une évaluation de leurs performances (solveurs monolithiques ou partitionnés), puis leur implémentation. Enfin, des cas tests représentatifs de structures industrielles seront simulés afin d’évaluer le gain en robustesse et en coût de calcul par rapport aux solveurs classiques.

Calcul HPC Adapté à la Logique Event-based pour le Transport

La méthode Monte Carlo est employée en physique des réacteurs pour obtenir des distributions de flux dites de référence. Le code TRIPOLI-5, actuellement en cours développement au CEA est une application basée sur cette méthode. Avec l’arrivée des futures machines avec une architecture matérielle accélérée (CPU+GPU) comme la machine exaflopique Alice Recoque, il est essentiel de revoir certains aspects de ces codes pour tirer partie du matériel. Dans le cadre de TRIPOLI-5, des travaux précédents ont permis de
déporter le calcul de l’élargissement Doppler des sections efficaces à la température du matériau sur GPU. Néanmoins, le transport lui-même reste sur CPU.

Dans cette proposition de travaux exploratoires, nous proposons de développer une maquette d’un code Monte Carlo simplifié basé sur du transport sur GPU. Ceci demandera notamment de changer l’algorithme : en effet actuellement, l’algorithme est dit « history-based » où l’on s’intéresse à la vie d’une particule de sa naissance à sa disparition. Afin d’exposer plus de parallélisme, il est opportun d’employer un algorithme « event-based », où l’on s’intéresse à un même type d’évènement dans l’histoire d’un ensemble de particules. Le changement d’algorithme nécessite de reconcevoir un code et disposer d’une maquette est
primordial pour mener des recherches et des expérimentations sur l’architecture informatique.

Le but de ce projet est d’identifier des technologies logicielles utiles pour l’adaptation des codes de transport Monte-Carlo aux machines exaflopique. En particulier, on s’intéresse à l’écosystème de la bibliothèque multi-plateforme Kokkos. On se basera sur les bibliothèques opensource ArborX et Cabana. ArborX fournit des primitives de recherche géométrique optimisées pour GPU et Cabana propose des structures de données adaptées aux systèmes particulaires.

VALERIAN: simulation du transport d'électrons pour les modules les modules ITkPix d'ATLAS

Une description précise du transport des électrons et des photons dans la matière est cruciale dans plusieurs domaines phares du CEA, notamment la radioprotection et l’instrumentation nucléaire. Leur validation nécessite des études paramétriques dédiées et des mesures. Étant donné le peu de données expérimentales publiques, des comparaisons entre codes de calcul sont aussi utilisées. L’enjeu pour les années à venir est une qualification de ces codes dans un large domaine d'énergie, certains écarts entre leurs résultats ayant été identifiés lors d’études préliminaires du SERMA faisant intervenir le transport couplé de neutrons, photons et électrons. Le projet VALERIAN consiste à saisir l’opportunité créée par une campagne de prise de données unique en son genre prévue en 2025-2026 à l’IRFU (DRF) pour mieux caractériser ces écarts. En effet, l’IRFU s’est engagé à contrôler au moins 750 modules à pixels pour le nouveau trajectographe de l’expérience ATLAS, dans le cadre de la jouvence des grands détecteurs du CERN. De nombreuses mesures avec des sources bêta seront réalisées en 2025-2026 pour la qualification de ces modules.

Étude de la formulation Vitesse-Vorticité-Pression pour discrétiser les équations de Navier-Stokes.

Les équations de Navier-Stokes incompressibles sont parmi les modèles les plus
utilisés pour décrire les écoulements d’un fluide newtonien (c’est-à-dire un fluide dont la viscosité est indépendante des forces extérieures appliquée au fluide). Ces équations modélisent le champ de vitesse et le champ de pression du fluide. La première des deux équations n’est autre que la loi de Newton, tandis que la seconde découle de la conservation de la masse dans le cas d’un fluide incompressible (la divergence de la vitesse est nulle). L’approximation numérique de ces équations est un véritable défi en raison de leur caractère tridimensionnel et instationnaire, de la contrainte de divergence nulle et enfin de la non-linéarité du terme de convection. Il existe différentes méthodes de discrétisation, mais pour la plupart de ces méthodes, l’équation de conservation de la masse n’est pas satisfaite exactement. Une alternative consiste alors à introduire comme inconnue supplémentaire la vorticité du fluide, égale au rotationel de la vitesse. On réécrit alors les équations de Navier-Stokes avec trois équations. Le post-doc consiste à étudier d'un point de vue théorique et numérique cette formulation et de proposer un algorithme de résolution efficace, dans le code TrioCFD.

Etude du comportement sismique des tuyauteries via des modèles mécaniques de différents niveaux de fidélité

Les tuyauteries font partie des équipements pour lesquels une attention particulière est portée dans le cadre du réexamen de sûreté ou de la conception des installations nucléaires. Les systèmes de tuyauterie des installations nucléaires sont conçus conformément aux codes, normes et réglementations, pour résister aux chargements qui se produisent ou pourraient se produire pendant la durée de vie nominale d’une installation. Ces systèmes doivent donc être conçus pour résister aux chargements accidentels tels que les séismes. Le retour d’expérience montre que les tuyauteries se comportent généralement bien en cas de séisme. Lorsque des défaillances sont observées, elles sont plutôt dues à un mouvement important des ancrages, à des matériaux fragiles, à des joints non soudés, à la corrosion, à des défaillances des supports de tuyauterie ou à des interactions sismiques. En pratique, pour pouvoir estimer le comportement sismique au-delà du niveau de dimensionnement et les risques de défaillance associés, l’ingénieur peut mettre en œuvre des modèles numériques impliquant des degrés de raffinement variés en fonction des besoins. Cette étude consiste à faire un bilan sur les capacités de modélisation numérique des tuyauteries sous séisme. Pour des raisons de temps de calculs, se sont souvent des modélisations globales de type poutre qui sont plébiscitées, en considérant des lois de matériaux simplifiées comme des lois de matériaux bilinéaires avec écrouissage cinématique. On connait les limitations « théoriques » de ces modélisations mais il est difficile d’avoir les idées claires concernant leurs limites d’applicabilité effectives en fonction du niveau de sollicitation et du dommage visé. Pour faire ce bilan, on propose d’interpréter, à l’aide de différents modèles numériques impliquant différents degrés de fidélité, les résultats de la campagne expérimentale menée par le BARC et qui a servi au benchmark MECOS (MEtallic COmponent margins under high Seismic loads).

Mise au point, validation métrologique et essais en milieu extérieur d'une unité de mesure Raman/FO multitrack dédiée à la sécurité de futures stations cryogéniques de distribution d’hydrogène liquide

Contexte : Les usages domestique et industriel de l’hydrogène liquide comme carburant du futur nécessitent de définir un code de sécurité adapté. Actuellement, les critères de séparation des réservoirs ont été définis par anticipation selon une approche conservatoire. Il est donc nécessaire de réaliser des expériences en vraie grandeur (épandages) afin d’alimenter des codes de calculs et bâtir une normalisation pertinente. Ces expériences requièrent la mise en œuvre d’une instrumentation adaptée à la mesure de tous les gaz présents en espace libre (O2, N2, H2O, H2) afin d’établir un relevé de pressions partielles au cours de chaque essai, corrélé aux autres moyens de mesure mis en place (thermométrie, catharométrie, PIV, BOS,…).
Mission : Dans le contexte d’un projet ANR-PEPR (ESKHYMO) géré par le CEA Liten, une unité de mesure spectrométrique Raman/FO Multitrack sera mise au point conjointement par le CEA List et le CEA DES sur la base d’un dispositif existant. La mesure Raman est multi-élémentaire, multi-track (une seule unité de mesure pour plusieurs sondes), non-déflagrante, et délivre une mesure autonormalisée à une espèce de référence (le plus souvent l’azote à la pression atmosphérique). L’unité de mesure Raman/FO comportera un laser, un spectromètre associé à une caméra CCD scientifique et un circuit de fibres optiques permettant le déport de la mesure. La conception des sondes Raman/FO sera également basée sur une réalisation existante au CEA que l’on cherchera à miniaturiser en vue d’un déploiement en conditions de terrain. Quatre sondes Raman/FO seront réalisées puis ensuite étalonnées en air (enceinte climatique) et en hydrogène (tube à choc ou chambre à vide) au CEA DES DM2S à Saclay. Finalement, le dispositif final sera déployé sur site d’essai pour procéder à des mesures multigaz lors des expériences d’épandage, en partenariat avec l’industriel Air Liquide et les organismes accréditeurs (INERIS).
Compétences : Optique, laser, fibres optiques

Comportement sismique d’un pont roulant

Les ponts roulants font partie des équipements d’installations industrielles pour lesquels il convient de porter une attention particulière. Ils sont en effet généralement situés en partie haute des ouvrages de génie civil et donc potentiellement soumis à des niveaux importants d’accélération en cas de séisme du fait de l’amplification induite par la structure porteuse. En conséquence, ils sont potentiellement sujets à des efforts significatifs et peuvent être la source d’efforts importants sur la structure de supportage. L’enjeu pour la sûreté est de se prémunir face au risque d’agression avec des équipements sensibles, en cas d’instabilité des éléments constitutifs du pont ou de la structure de supportage. Cette étude s’inscrit dans la continuité de deux précédentes campagnes d’essais qui ont été menées sur la table vibrante Azalée du laboratoire EMSI sur une maquette de pont roulant. Elle vise à fournir des modèles numériques validés de ponts roulants. Deux axes de recherche sont envisagés. Le premier axe consiste à compléter les campagnes d’essais « historiques » par des essais statiques sur la maquette pour justifier le recalage des modèles numériques. Le second axe consiste à exploiter, par confrontation essais/calculs, l’ensemble des essais qui ont été réalisés dans le cadre d’une campagne d’essais précédente et qui ont été réalisés à des fins d’analyse statistique.

Effets des tremblements de terre sur les installations souterraines

Le Centre industriel de stockage géologique (Cigéo) est un projet de centre de stockage géologique profond de déchets radioactifs à construire en France. Ces déchets seront placés dans des colis scellés dans des tunnels conçus à 500 mètres de profondeur. Les scellements sont constitués d'un mélange de bentonite et de sable qui présente une forte capacité de gonflement et une faible perméabilité à l'eau. Dans le cadre de la démonstration de la sûreté à long terme du dépôt, il doit être démontré que les structures de scellement peuvent remplir leurs fonctions sous chargements sismiques pendant toute leur durée de vie. Afin de garantir ce futur dépôt de déchets nucléaires, le CEA et l'Andra collaborent pour travailler sur les potentiels défis scientifiques et techniques.
La réponse des scellements souterrains aux séismes est complexe en raison de l'évolution spatiale et temporelle des propriétés hydromécaniques des milieux environnants et de la structure elle-même. Une modélisation précise du comportement nécessite donc un code numérique multiphysique couplé pour modéliser efficacement les réponses sismiques de ces structures souterraines pendant leur durée de vie estimée à 100 000 ans.
La recherche proposera donc une évaluation des performances de la modélisation numérique séquentielle et parallèle par éléments finis pour l'analyse sismique des installations souterraines profondes. Ensuite, elle effectuera un échantillonnage de données synthétiques pour tenir compte des incertitudes liées aux matériaux et, sur la base des résultats obtenus lors de l'évaluation précédente, elle effectuera une analyse de sensibilité en utilisant une méthode FEM ou un processus de métamodélisation. Enfin, les résultats et les connaissances acquises dans le cadre de ce projet seront traités et interprétés afin de fournir des réponses aux besoins industriels.

Conception et validation de schémas de calcul neutroniques innovants pour les coeurs de réacteurs nucléaires sans bore soluble

Dans le cadre du projet NUWARD™, le CEA est en charge du développement et de la validation des schémas de calcul neutroniques de référence en appui à la conception du réacteur.
Au sein du SERMA/LPEC, le candidat participera aux développements de schémas de calcul innovants dédiés au coeur du réacteur NUWARD™ mettant en œuvre des modélisations avancées du code déterministe de nouvelle génération APOLLO3®, ainsi qu'à la réalisation des études pour la vérification et la validation des schémas développés.

Top