Mise au point de procédés innovants de métallisation pour la fabrication de structures d’interconnexions avancées de cellules solaires

La fabrication de cellules solaires performantes et à coût maîtrisé constitue un enjeu majeur, et mobilise de nombreuses équipes de recherches et industriels dans le monde. De nombreuses solutions technologiques sont actuellement développées et évaluées dans ce but. Ainsi, la limitation de l’ombrage des zones actives par les lignes de métal qui collectent le courant est-elle l’une des voies d’amélioration les plus prometteuses. Cette étude vise à mettre au point un nouveau procédé de fabrication de lignes métalliques étroites en utilisant un dépôt électrochimique en remplacement de la sérigraphie. Dans cette approche, le substrat conducteur est revêtu d’un masque isolant qui définit les lignes, et le métal est directement déposé par électrolyse, sélectivement sur les zones faiblement conductrices (c’est-à-dire les lignes). Les procédés seront à adapter en fonction de la nature des zones faiblement conductrices sur lesquelles devront être réalisés les dépôts electroless et/ou électrolytiques.

Minimisation des dommages induits par la gravure par plasma sur les flancs des motifs de semi-conducteurs III-V

Ce projet consiste en l’étude des dommages induits par la gravure par plasma sur les flancs des motifs de semi-conducteurs III-V, afin de développer des solutions technologiques innovantes capables de les minimiser. Nous cherchons à mieux comprendre par quels mécanismes et dans quelle mesure les procédés de gravure plasma modifient les flancs des motifs de semi-conducteurs III-V et les conséquences que cela induit sur les propriétés optiques des dispositifs. Le semi-conducteur étudié sera l’Al0.17Ga0.83As qui possède d’excellentes propriétés opto-électroniques et un gain paramétrique non-linéaire fort.
Le PostDoc se focalisera sur la compréhension des mécanismes d’endommagement par gravure plasma. Il s’agira de déterminer quels sont les paramètres clés de la gravure plasma qui influencent les changements structuraux et chimiques observés sur les flancs de l’Al0.17Ga0.83As ainsi que les changements des propriétés optiques. Cela nécessitera le développement d’une méthodologie de caractérisation 3D quantitative à l’échelle nanométrique des flancs de gravure, basée sur la microscopie Auger et la cathodoluminescence. L’objectif sera ensuite de corréler les défauts structuraux induits par gravure plasma aux modifications des propriétés optoélectroniques. Enfin, le travail consistera à développer un procédé de gravure plasma permettant de minimiser les dommages induits sur les flancs, en explorant des techniques innovantes et alternatives. Des procédés de restauration et de passivations de ces flancs seront aussi étudiés.

Fusion de données 3D issues de tomographie par rayons X et SIMS

Le service de caractérisation des matériaux et des composants du CEA-LETI s’est récemment doté de 2 outils expérimentaux pour effectuer de l’imagerie 3D à des résolutions spatiales atteignant 100nm. Il s’agit de la tomographie X dans un MEB et de la spectrométrie de masse assistée par usinage ionique. La tomographie X donne fournit des images 3D de la morphologie interne d’un objet. Le SIMS 3D fournit également une image 3D avec en plus une information chimique. Ces 2 techniques sont à l’état de l’art et il est envisagé de les associer afin d’obtenir une caractérisation 3D quantitative d’objets tels que les copper pillars en microélectronique, ou des électrodes Si utilisées comme anode dans des batteries Li-ion. Le sujet de post-doc sera centré sur l’analyse de données. Une phase de simulation pourra être envisagée afin d’implémenter et de tester des approches existantes en fusion de données 3D. Ces approches devront être améliorées et adaptées. Il s’agira ensuite de participer aux campagnes de mesure, et de traiter les jeux de données avec les approches précédemment validées. Dans un contexte très pragmatique, un certain goût pour les mathématiques appliquées et la programmation sont indispensables pour appréhender des algorithmes de fusion/reconstruction avec des approches d’abord basiques puis de plus en plus avancées (contraintes, régularisation, supériorisation, fusion Bayesienne,etc). Un docteur (éventuellement ingénieur) physicien étant très à l’aise avec l’informatique (Python, Matlab, C) et le traitement d’image est recherché, ou alors un docteur en mathématiques/informatique intéressé par les applications, dans les 2 cas avec une expérience en caractérisation. Il faudra faire l’interface dans une équipe transverse et donc avoir une certaine ouverture d’esprit et une bonne capacité d’écoute. De bonnes capacités rédactionnelles et orales sont requises (anglais français) pour valoriser les résultats (articles, conférences, brevet, séminaire internes).

Mise au point de procédés innovants de métallisation pour la fabrication de structures d’interconnexions avancées de cellules solaires

La fabrication de cellules solaires performantes et à coût maîtrisé constitue un enjeu majeur, et mobilise de nombreuses équipes de recherches et industriels dans le monde. De nombreuses solutions technologiques sont actuellement développées et évaluées dans ce but. Ainsi, la limitation de l’ombrage des zones actives par les lignes de métal qui collectent le courant est-elle l’une des voies d’amélioration les plus prometteuses. Cette étude vise à mettre au point un nouveau procédé de fabrication de lignes métalliques étroites en utilisant un dépôt électrochimique en remplacement de la sérigraphie. Dans cette approche, le substrat conducteur est revêtu d’un masque isolant qui définit les lignes, et le métal est directement déposé par électrolyse, sélectivement sur les zones faiblement conductrices (c’est-à-dire les lignes). Les procédés seront à adapter en fonction de la nature des zones faiblement conductrices sur lesquelles devront être réalisés les dépôts électrolytiques.

Elaboration de nanofils Si pour des applications en microélectronique

La réalisation de capacités intégrées présentant une forte capacité surfacique nécessite un déploiement de la surface des électrodes. Dans ce travail, nous proposons d’augmenter cette surface spécifique en intégrant dans les capacités des nanofils de Si.Une première partie de ce travail sera consacrée à l’étude de compréhension et à l’optimisation du procédé de croissance de nanofils de silicium par CVD. En parallèle, les propriétés des nanofils de silicium obtenus par gravure électrochimique seront évaluées et seront comparés à celles des nanofils obtenues par CVD. Selon les caractéristiques électriques obtenues, différentes stratégies (métallisation, silicuration…) seront envisagées afin d’améliorer leur conductivité électrique.

Top