Electrodes négatives nanostructurées pour batteries magnésium-ion

Le sujet s’inscrit dans un projet ANR portant sur le développement d’électrodes négatives pour les accumulateurs électrochimiques magnésium (Mg)-ion. Le magnésium apparaît comme une excellente alternative au lithium en raison de sa forte capacité spécifique, son faible coût, son abondance sur Terre et sa faible réactivité. Cependant, les électrolytes conventionnels interagissent fortement avec le magnésium métallique pour former une couche de surface bloquante à la surface du Mg métallique, inhibant les réactions électrochimiques réversibles. Une solution intéressante pour pallier à ce problème est le remplacement de l’électrode en Mg métallique par un matériau compatible avec des solvants et solutions électrolytiques présentant de larges fenêtres de stabilité électrochimique. Les composés d’alliages avec le Mg possèdent une stabilité appropriée dans les électrolytes classiques, des potentiels légèrement plus élevés que le Mg métallique pur mais des capacités spécifiques plus faibles. Dans le cadre d’un projet ANR, le laboratoire LEEL développe de nouveaux composés d’alliage pour ces batteries et cherche à les nanostructurer afin de résoudre les problèmes d’expansion volumique et de diffusion lente des ions lors de l’alliage avec le Mg.
Dans ce projet, le/la post-doctorant(e) sera en charge dans un premier temps de la compréhension fondamentale de la réactivité vis-à-vis des électrolytes des alliages développés au laboratoire via notamment des mesures par impédance et XPS. Dans un deuxième temps, il s’agira d’optimiser les formulations d’électrode et d’électrolyte via la comparaison systématique des performances en demi-cellule. Finalement, des cellules complètes Mg-ion seront réalisées avec les meilleurs couples électrode/électrolyte.

Spectroscopie de centres colorés de l’AlN

L’étude de l’émission optique de centres profonds dans les semiconducteurs est devenu un sujet important dans le cadre général du traitement quantique de l’information et des nano-capteurs, l’émetteur le plus étudié étant le centre N-V du diamant. Récemment, le potentiel de défauts dans de nouveaux matériaux a été évalué, par exemple dans le GaN et le BN. Par contre, le potentiel de l’AlN pour ces applications n’a encore que très peu été exploré, malgré les nombreux avantages que ce matériau présente : il peut être épitaxié, des substrats bulk de haute qualité sont disponibles, il peut être gravé pour former des microcavités de haute qualité optique.
Dans ce post-doc de 12 mois, nous proposons d’explorer les propriétés optiques de centres profonds dans l’AlN. Nous étudierons en particulier par microphotoluminescence et luminescence résolue en temps différents types d’AlN : couches minces d’AlN sur silicium, couches plus épaisses d’AlN sur saphir, des ensembles de nanofils et des nanofils uniques.

Composites nano-silicium/graphène pour batteries lithium-ion à haute densité d’énergie

Le sujet s’inscrit dans un projet H2020 inclus dans le Core 2 du Flagship Graphene (2018-2020), portant sur les applications du graphène dans le stockage de l’énergie. Pour les batteries Li-ion, le graphène est associé en composite avec du silicium nano-structuré pour augmenter la capacité énergétique. Le graphène enrobe le silicium, réduisant sa réactivité avec l’électrolyte et la formation de la couche de passivation (SEI), et maintient une conductivité électrique élevée dans l’électrode.
L’étude porte sur 2 technologies : l’optimisation de composites graphène-nanoparticules de Si déjà explorés dans ce projet, et la mise au point de composites inédits graphène-nanofils de Si pour comparaison. Elle sera menée dans deux laboratoires du CEA en étroite collaboration : au LITEN (recherche technologique) spécialisé dans les batteries pour le transport, et à l’INAC (recherche fondamentale) spécialisé dans la synthèse de nanomatériaux.
Le/la postdoc fera la synthèse des nanofils de Si pour ses composites par le procédé de croissance en masse récemment breveté à l’INAC. Elle/il sera en charge de la formulation des composites selon le savoir-faire du LITEN et de leur mise en œuvre en pile bouton pour tests en cyclage. Il/elle mènera une comparaison systématique du comportement électrochimique des deux types de composites à base de nanoparticules et de nanofils. La comparaison s’appuiera sur une étude du mécanisme de perte progressive de capacité et de formation de la SEI grâce aux outils de caractérisation disponibles au CEA Grenoble et dans le consortium du projet : diffraction X, microscopie électronique, spectroscopies XPS, FTIR, RMN. Elle/il participera aux travaux du consortium international (Cambridge UK, Gênes Italie, Graz Autriche).
Le contrat postdoctoral est attribué pour 2 ans.
On recherche un docteur en sciences des matériaux avec expérience en nanocaractérisation, nanochimie et/ou électrochimie.
Les candidatures sont attendues avant le 31 mai 2018.

Etude in situ à l’aide du rayonnement synchrotron de la croissance de graphène sur catalyseur métal liquide

The postdoctoral research project is part of a four-year European FET-Open project called LMCat (http://lmcat.eu/) bringing together five European labs, including the ESRF and the CEA-INAC, to develop the growth of defect-free two-dimensional materials by liquid-metal catalytic routes. A central lab will be established at the ESRF to develop an instrumentation/methodology capable of studying the ongoing chemical reactions on the molten catalyst. The growth by chemical vapor deposition at high pressure and temperatures will be characterized in situ, by means of two main techniques: Raman and X-ray scattering (Grazing Incidence X-Ray Scattering and Reflectivity). It will be complemented by theoretical calculations performed in Munich. The successful candidate will be in charge; together with a PhD student, of the in situ synchrotron X-ray scattering measurements, using the ESRF ID10 liquid scattering beamline (http://www.esrf.eu/UsersAndScience/Experiments/CBS/ID10) and the P08 beamline of PETRA-III (photon-science.desy.de/facilities/petra_iii/beamlines/p08_highres_diffraction/index_eng.html), in Desy.
You should hold a PhD in physics, chemistry or material science or closely related science. Previous experience of complex instrumental environment, MBE or CVD growth methods and / or with synchrotron X-ray scattering / diffraction / reflectivity, especially on liquids, will be an advantage. You should be motivated to work with an international team of young researchers with an experimental setup at the forefront of instrumental development, and ready to travel in Germany (Hambourg) for extended periods to perform some of the experiments. A good practice of English is mandatory. You should also have:
This is a full time, 3 year contract.
Please submit a 1 page cover letter stating the motivation, research experience and goals, ; a curriculum vitae, and contact information for 3 references.

Simulation de l’échange thermique entre fluide et structure dans des canaux turbulents

En ce moment il y a un effort considérable en Europe dans le domaine des Grands Lasers de puissance, de l’ordre du PetaWatt, avec des taux de répétition élevés (de 1 à 10 Hz) : sans parler du programme MegaJoule à Bordeaux, et du laser « Petale » - où le taux de répétition est cependant très bas – , de grands projets sont en cours en Europe Orientale avec les 3 projets « ELI », en France avec le laser « Apollon » (10 PW) , tous projets de lasers PW répétitifs pour la science et les applications. Ces grands projets entrainent – et exigent – une maitrise parfaite des défis technologiques que posent les grands lasers. Aux forts taux de répétition, la thermique est un des défis les plus importants.
Pour le relever, et préparer l’avenir, le CEA (Grenoble et Saclay, avec une collaboration du LEGI à Grenoble) a décidé de lancer un programme de R&D avec les tâches suivantes : (i) simulation du refroidissement d’amplificateurs lasers ; (ii) validation expérimentale des calculs ; (iii) conception d’un système de refroidissement adapté aux futurs lasers de puissance à fort taux de répétition : pour cela, l’hélium gazeux à basse température est un fluide particulièrement intéressant pour les raisons suivantes : 1. Travailler à basse température permet de maximiser la conductivité thermique des matériaux amplificateurs, en sorte que la température y soit bien homogène, condition sine qua non pour garder la cohérence du faisceau. 2. En outre, l’efficacité de l’amplification est supérieure lorsque l’on travaille à basse température (50 – 150 K). La maitrise de la température des amplificateurs se fait par l’échange thermique entre le fluide caloporteur et les amplificateurs.
Le post doctorat proposé se situe au niveau de la tâche (i) : simulation du refroidissement des amplificateurs et de l’écoulement de fluide caloporteur.

Modélisation des bits quantiques silicium-sur-isolant

Les technologies de l’information quantique ont suscité beaucoup d’intérêt ces dernières années. Le CEA développe sa propre plate-forme originale basée sur la technologie "silicium-sur-isolant" (SOI). L’information quantique est stockée dans le spin des porteurs piégés dans des boîtes quantiques gravées dans un fin film de silicium et contrôlées par des grilles métalliques. Le SOI a de nombreux atouts: la gravure du film de silicium permet de produire des boîtes plus petites, donc plus denses; en outre, l’utilisation du substrat SOI comme grille "arrière" permet d’accroître le contrôle des bits quantiques (qubits).
De nombreux aspects de la physique de ces qubits restent mal compris. Il est donc essentiel de soutenir l’activité expérimentale avec une modélisation adaptée. Dans ce but, le CEA développe activement le code "TB_Sim". Les buts de ce projet post-doctoral de 2 ans sont de modéliser la manipulation et la lecture du spin dans les qubits SOI, et de modéliser la décohérence et la relaxation à l’échelle atomique en utilisant le code TB_Sim. Ce travail de modélisation sera étroitement couplé à l’activité expérimentale à Grenoble. Le ou la candidat(e) aura accès à des données expérimentales sur des dispositifs à l’état de l’art.

Recyclage de plastics par l'extraction d'additifs toxiques par solvents verts

Il est important de développer les connaissances scientifiques et de stimuler les innovations en matière de recyclage des plastiques. La très grande variété d'objets en plastique que nous utilisons dans notre vie quotidienne est constituée d'un large éventail de matériaux plastiques couvrant de nombreux polymères différents, de nombreuses formulations différentes. Les objets en plastique sont également utilisés à de nombreuses fins et il est donc nécessaire de disposer de différents moyens pour les collecter, les trier et les traiter.
Les méthodes de recyclage des plastiques sont généralement divisées en quatre catégories : primaire, secondaire, tertiaire et qua-ternaire (voir figure 9). On parle de recyclage primaire ou de méthode de recyclage en circuit fermé lorsque les matériaux après recyclage présentent des propriétés égales ou améliorées par rapport aux matériaux initiaux ou vierges. Lorsque les produits recyclés présentent une diminution de leurs propriétés, on peut s'inquiéter de la méthode de recyclage secondaire ou de la méthode de recyclage en aval. Dans la méthode de recyclage tertiaire (également connue sous le nom de recyclage chimique ou de recyclage des matières premières), le flux de déchets est converti en monomères ou en produits chimiques qui peuvent être avantageusement utilisés dans les industries chimiques. Enfin, la méthode de recyclage quaternaire (également connue sous le nom de recyclage thermique, de récupération d'énergie et d'énergie à partir des déchets) correspond à la récupération des plastiques sous forme d'énergie et n'est pas considérée comme un recyclage dans le cadre de l'économie circulaire.
Divers procédés peuvent être envisagés pour le recyclage chimique, qui présentent différents niveaux de maturité. D'où ce projet qui étudiera la décontamination de diverses formulations de PVC à l'aide de solvants verts, et plus particulièrement le CO2 supercritique.

Nano-imagerie des rayons X via des réseaux neuronaux

Le projet de recherche postdoctorale s'inscrit dans le cadre d'un projet à 5 ans financé par le CER et intitulé CARINE (Coherent diffrAction foR a Look Inside NanostructurEs towards atomic resolution: catalysis and interfaces - https://carine-erc.eu) visant à développer et à appliquer l'imagerie cohérente des rayons X en condition de Bragg. Nous voulons développer et appliquer des approches d'apprentissage automatique et, plus généralement, de science des données pour l'imagerie et la caractérisation des systèmes à l'échelle nanométrique. L'imagerie par diffraction cohérente des rayons X est un nouvel outil puissant pour sonder la structure des nanomatériaux de manière non destructive avec une résolution spatiale de 10 nm. Le problème de reconstruction, connu sous le nom de "récupération de phase", est généralement résolu par des algorithmes itératifs qui ne convergent pas toujours. L'apprentissage automatique sera appliqué à différentes tâches telles que la récupération de phase, la super-résolution, le déroulage de phase, etc., afin d'inverser sans ambiguïté les clichés de diffraction et d'imager la structure d'un objet 3D avec une résolution de l'ordre du nm.

Top