Nouveaux matériaux semiconducteurs pour la détection neutronique
Le candidat travaillera au CEA LITEN sur l’élaboration de monocristaux de pérovskites organiques-inorganiques. Les protocoles de cristallogenèse par voie liquide s’inspireront de travaux préliminaires issus de plusieurs stages et thèses au laboratoire. L’étudiant fera varier la structure du matériau, sa composition chimique ou le dopage de manière à optimiser les performances en scintillation et détection directe pour la détection des neutrons rapides. Les meilleures compositions sélectionnées sur la base de leurs propriétés structurales, optiques et en réponses sous rayons X, seront ensuite intégrées en détecteurs et caractérisées sous flux et énergies neutroniques variés. Leurs performances et tenues sous irradiations seront étudiées et comparées aux matériaux existants.
Titulaire d’un doctorat en matériaux ou chimie, avec une capacité à travailler avec des équipes multidisciplinaires (collaboration avec les équipes du CEA LETI à Grenoble, IRESNE à Cadarache et LIST à Saclay), une bonne autonomie et enfin de bonnes compétences organisationnelles seront des atouts majeurs pour mener à bien cette mission.
Convertisseur forte puissance isolé avec un module intelligent GaN 1200V/150A et un transformateur Planaire pour les applications V2X (vehicule to everything)
Les systèmes de conversion d’énergie sont considérés comme critiques pour réduire les émissions de CO2 sur la planète. Dans la plupart des applications, deux défis majeurs se posent :
• Augmenter les rendements énergétiques en augmentant la fréquence de commutation des nouveaux semi-conducteurs tels que le SiC (carbure de silicium) ou le GaN (nitrure de gallium)
• Réduire la masse et le volume des systèmes pour économiser les matières premières et l’énergie
Ces systèmes d’électronique de puissance doivent fonctionner dans des environnements difficiles du point de vue électromagnétique et thermique. De plus, ils introduisent des perturbations lors des commutations qui dépendent fortement de l’agencement des composants et des méthodes de packaging (l’objectif est donc de minimiser les résistances électriques et thermiques ainsi que les inductances parasites liées aux interconnexions). Le packaging comprendra les composants actifs avec leurs circuits de commande, appelés « modules de puissance intelligents ». C'est pourquoi ce projet V2xGaN vise à développer un module de puissance à base de GaN pour les applications V2X (vehicle to everything)
Modélisation et intégration de types de données Local-First
Les frameworks de modélisation existants ont des capacités de collaboration limitées. La collaboration au niveau des éléménts d'un modèle est une des fonctionnalités les plus souhaitées, comme déjà identifié. Cependant, la plupart des solutions s'appuient principalement sur des bases de données centralisées et son hebergées dans un cloud. Bien que ces solutions facilitent la collaboration entre les partenaires connectés en employant des techniques de contrôle de concurrence ou en adoptant une politique du "dernier écrivain gagne", elles ne supportent pas les scénarios de collaboration déconnectée, une caractéristique importante pour la conception de logiciels local-first. Cette situation présente un compromis : utiliser des solutions basées sur le cloud et sacrifier le contrôle de la propriété des données versus adopter des instances séparées sans capacités collaboratives. L'objectif de ce projet postdoctoral est de contribuer et d'étendre un cadre existant de Model-Based Systems Engineering (MBSE), construit sur des Conflict-free Replicated Data Types (CRDTs) spécialisés. Le but est de permettre une collaboration en temps réel grâce à des CRDTs spécifiques à la modélisation. L'approche proposée implique l'extension d'une couche middleware utilisant des CRDTs pour synchroniser de manière transparente des modèles distribués et capables de fonctionner hors ligne.
Développement d'une nouvelle génération d'adhésifs polymères réversibles
Les adhésifs polymères sont des systèmes généralement réticulés utilisés pour lier deux substrats durant toute la durée de vie d’un assemblage pouvant être multimatériau et ce pour de multiples applications. En fin de vie, la présence d’adhésifs rend difficile la séparation des matériaux ainsi que leur recyclage, du fait de la difficulté de détruire la réticulation de l’adhésif sans traitement chimique ou thermique agressif également pour les substrats liés.
Dans ce cadre, le CEA développe des adhésifs à recyclabilité augmentée, et ce via l’intégration de la recyclabilité dans les structures chimiques dès la synthèse des réseaux polymères. Une première approche consiste à intégrer à des réseaux polymères des liaisons dynamiques covalentes, échangeables sous stimulus généralement thermique (par exemple des vitrimères). Une seconde consiste à synthétiser des polymères dépolymérisables sous un stimulus spécifique (polymères auto-immolables) ayant la capacité de réticuler.
Dans ce contexte, le.a post-doctorant.e développera 2 réseaux utilisables en tant qu’adhésif à recyclabilité augmentée. Un premier réseau se basera sur une chimie dépolymérisable sous stimulus déjà développée sur des chaines linéaires de polymère, devant être transposée à un réseau. D’autre part, un second réseau vitrimère sera synthétisé sur la base de travaux précédents au CEA. L’activation de l’échange de liaisons dans ce réseau se fera via un catalyseur dit photolatent, activable par UV et permettant d’obtenir un adhésif à stimulus UV et thermique. Le choix, la synthèse de ces catalyseurs et leurs impacts sur l’adhésif seront l’objet de l’étude réalisée. Les catalyseurs obtenus pourront également être utilisés comme déclencheurs de la dépolymérisation du premier système dépolymérisable sous stimulus.
Co-Optimisations de Conceptions et Technologies (DTCO) pour les applications RF millimétriques: utilisation de l'intégration homogène et hétérogène puce à plaque par collage hybride
Ces dernières années ont été l'objet de nombreuses avancées technologiques dans les semi-conducteurs à base de silicium; néanmoins les limites en termes de performances fréquentielles et de puissance semblent atteintes et imposent le développement de nouveaux composants type III-V (telles que InP et GaN) plus rapides et plus puissants pour les applications RF millimétriques. Pour des raisons de flexibilité, de performances et de coûts, il est primordial de co-intégrer ces nouveaux composants hautes-performances III-V avec les filières plus classiques silicium : c'est un des objectifs majeurs du sujet proposé. Les deux années de formation par la recherche proposées seront principalement l'objet de conceptions et d’optimisations de circuits RF millimétriques tirant partie de la technologie d'assemblage 3D hétérogène puce à plaque collage hybride. De nombreux véhicules de tests ont été réalisés et caractérisés ces dernières années et ont permis de montrer les avantages et inconvénients de l'assemblage puce à plaque collage hybride pour les applications RF millimétriques. Il s'agit donc de prolonger ces travaux et de focaliser les études et recherches sur des systèmes RF réels de type amplificateur de puissance millimétrique. L'approche DTCO (Design and Technology Co-Optimisations) permettra non seulement de concevoir des circuits 3D-RF efficaces, mais aussi des réaliser des ajustements des différentes règles de conception 3D, et ainsi de rendre la technologie d'assemblage 3D par collage hybride pertinente pour la réalisation de systèmes intégrés 3D RF millimétriques.
Caractérisation électrique de matériaux 2D pour la microélectronique
Les composants de microélectroniques du futur seront de plus en plus petit et de moins en moins gourmands en énergie. Pour relever ce défi, les matériaux 2D sont d’excellents candidats du fait de leurs dimensions. De nouveaux matériaux 2D avec des propriétés nouvelles sont créés tous les jours. Mais leur intégration et la mesure de leurs performances dans des circuits est un défi. En effet, ils présentent des surfaces sans liaison pendantes ce qui leur permet de conserver leurs propriétés même à très petites dimensions mais il faut aussi réussir à préserver cette structure pendant l’intégration. Les étapes de dépôt, de transfert et de photolithographie sont susceptibles d’endommager ces surfaces fragiles.
L’objectif de ce post-doc est de développer des composants de caractérisation électrique et magnétique pour des matériaux 2D en configuration horizontale sur silicium. Le laboratoire a déjà mis au point un système de mesure verticale, mais les matériaux 2D étant très anisotropes, la mesure horizontale est nécessaire pour totalement qualifier ces matériaux. En s’appuyant sur les développements du procédé de réalisation vertical, le candidat mettra au point ce système de mesure et caractérisera différents matériaux réalisés en MBE par une autre équipe du CEA.
Calcul Haute performance exploitant la technologie CMOS Silicium à température cryogénique
Les avancées en matériaux, architectures de transistors et technologies de lithographie ont permis une croissance exponentielle des performances et de l’efficacité énergétique des circuits intégrés. De nouvelles voies, dont le fonctionnement à température cryogénique, pourraient permettre de nouvelles avancées. L’électronique cryogénique, nécessaire pour manipuler des Qubits à très basse température, est en plein essor. Des processeurs à 4.2 K utilisant 1.4 zJ par opération ont été proposés, basés sur l’électronique supraconductrice. Une autre approche consiste à réaliser des processeurs séquentiels très rapides en utilisant des technologies spécifiques et la basse température, réduisant la dissipation énergétique mais nécessitant un refroidissement. À basse température, les performances des transistors CMOS avancés augmentent, permettant de travailler à plus basse tension et d’augmenter les fréquences de fonctionnement. Cela pourrait améliorer l’efficacité séquentielle des calculateurs et simplifier la parallélisation des codes informatiques. Cependant, il faut repenser les matériaux et l’architecture des composants et circuits pour maximiser les avantages des basses températures. Le projet post-doctoral vise à déterminer si la température cryogénique offre un gain de performances suffisant pour le CMOS ou si elle doit être vue comme un catalyseur pour de nouvelles technologies de calcul haute performance. L’objectif est notamment d’évaluer l’augmentation de la vitesse de traitement avec des composants silicium conventionnels à basse température, en intégrant mesures et simulations.
Conception et mise en œuvre d’un réseau de neurones pour la simulation thermo-mécanique en fabrication additive
Le procédé WAAM (Wire Arc Additive Manufacturing) est une méthode de fabrication additive métallique permettant de fabriquer des pièces de grandes dimensions avec un taux de dépôt élevé. Cependant, ce procédé engendre des pièces fortement contraintes et déformées, rendant complexe la prédiction de leurs caractéristiques géométriques et mécaniques. La modélisation thermomécanique est essentielle pour prédire ces déformations, mais elle nécessite d'importantes ressources numériques et des temps de calcul élevés. Le projet NEUROWAAM vise à développer un modèle numérique thermomécanique précis et rapide en utilisant des réseaux de neurones pour prédire les phénomènes physiques du procédé WAAM. Un stage en 2025 fournira une base de données via des simulations thermomécaniques avec le logiciel CAST3M. L'objectif du post-doc est de développer une architecture de réseaux de neurones capable d'apprendre la relation entre la configuration de fabrication et les caractéristiques thermomécaniques des pièces. Des essais de fabrication sur la plateforme PRISMA du CEA seront réalisés pour valider le modèle et préparer une boucle de rétroaction. Le Laboratoire de Simulation Interactive du CEA List apportera son expertise en accélération de simulations par réseaux de neurones et en apprentissage actif pour réduire le temps d'entraînement.
Postdoc Contrôle Avancé Tolérant aux Défauts pour l'Amélioration de la Durabilité des Piles à Combustible
Les piles à combustible représentent une technologie clé pour les systèmes énergétiques propres et durables, en particulier dans des configurations hybrides pour des applications de transport et stationnaires. Cependant, leur durabilité dans des conditions réelles reste un défi critique. Ce projet vise à relever ces défis en explorant des stratégies de contrôle avancées basées sur des algorithmes de pronostic de pointe pour l’évaluation de l’état de santé des piles à combustible.
Cette offre se concentre sur les sujets de contrôle et optimisation avancés, et plus spécifiquement sur la conception de stratégies de contrôle tolérant aux défauts (FTC).
En s'appuyant sur des travaux antérieurs dans le domaine des pronostics par apprentissage automatique pour l’état de santé des piles à combustible, ce projet vise à développer des méthodes exploitant ces informations de pronostic pour optimiser le fonctionnement du système de pile à combustible. En combinant des approches basées sur des modèles, sur l’apprentissage par la donnée et avec des tests sur des plateformes réelles, ce projet vise à développer des solutions robustes et déployables qui améliorent la durabilité des piles à combustible tout en réduisant la complexité et les coûts de mise en œuvre des solutions avancées.
Développement de cellules Potassium-ion performantes et respectueuses de l'environnement
Les batteries Lithium-ion constituent un système de référence en termes de densité d’énergie et de durée de vie au point de devenir une technologie clé de la transition énergétique notamment en alimentant les voitures électriques. Cependant, cette technologie repose sur une utilisation importante d’éléments peu abondants et sur des procédés de fabrication énergivores.
Dans cette optique, notre équipe développe de nouvelles batteries Potassium-ion présentant des performances élevées et n’utilisant que des éléments abondants et des procédés de fabrication respectueux de l’environnement.
Pour ce projet ambitieux et innovant, le CEA-LITEN (acteur majeur européen dans le domaine de la recherche pour l'énergie) recrute un chercheur post doctoral en chimie des matériaux. L’offre s’adresse à un jeune chercheur talentueux possédant un excellent niveau scientifique et un gout prononcé pour la dissémination de ses résultats au travers de brevets et de publications scientifiques.