Allocation distribuée de ressources par les systèmes multi-agents. Application aux réseaux de chaleur
Les réseaux de chaleur en France alimentent plus d’un million de logements et délivrent une quantité de chaleur égale à environ 5% de la chaleur consommée par le secteur résidentiel et tertiaire. De ce fait, ils représentent un potentiel important pour l’introduction massive d’énergies renouvelables et de récupération. Cependant, les réseaux de chaleur sont des systèmes complexes qui doivent gérer un grand nombre de consommateurs et de producteurs d’énergie, répartis dans un environnement géographique étendu et fortement ramifié. Dans le cadre d’une collaboration entre le CEA-LIST et le CEA-LITEN, le projet SIGMA vise à une gestion dynamique et optimisée des réseaux de chaleur. Nous proposons une approche pluridisciplinaire, qui intègre à la fois la gestion avancée du réseau par les Systèmes Multi-Agents (SMA), la prise en compte des contraintes spatiales par des Systèmes d’Information Géographique (SIG) et la modélisation physique simplifiée du transport et de la valorisation de la chaleur.
Il s’agit de concevoir des mécanismes d’allocation dynamique de ressources de chaleur qui intègrent les descriptions en provenance du SIG et les prédictions de consommation, production et pertes calculées grâce aux modèles physiques. On prendra ainsi en compte plusieurs caractéristiques du réseau : le caractère continu et dynamique de la ressource ; des sources avec des comportements, des capacités et des coûts de production différents ; la dépendance de la consommation/production à des aspects externes (météo, prix de l’énergie) ; les caractéristiques internes du réseau (pertes, capacité de stockage). Le couplage avec le SIG permettra la mise en place de mécanismes d’auto-configuration de la gestion des différents réseaux et niveaux de granularité obtenus par réduction du SIG original. Le SMA devra établir de manière dynamique le lien entre les modèles simplifiés adaptés et le niveau de granularité souhaité et créer les agents nécessaires pour représenter le système.
Developpement de contacts métalliques pour les transistors MOSFET à canal MoS2
Ce travail s’inscrit dans le contexte actuel des recherches prospectives en micro-électronique qui essaye de tirer profit de nouveaux matériaux émergents aux dimensions nanométriques pour continuer la réduction d’échelle des dispositifs MOSFETs. Aujourd’hui, les matériaux 2D, en particulier les dichalcogénures de métaux de transition, présente une alternative intéressante aux technologies Si. En effet, la structure lamellaire des matériaux 2D permet de travailler avec seulement quelques monocouches. En utilisant ces matériaux comme canal du transistor, ils offrent une très bonne immunité aux effets de canal court par rapport aux transistors à effet de champ conventionnels à base de Si.
Cependant, l'introduction de ces nouveaux matériaux semi-conducteurs comme pose un certain nombre de problèmes. Le premier d’entre eux concerne la formation des contacts source et drain. Si de nombreux efforts ont été déployés ces dernières années pour réduire les résistances de contact, pour beaucoup, ces approches ne sont pas compatibles avec une intégration CMOS. L'objectif principal de ce travail est donc de proposer une compréhension approfondie des caractéristiques des contacts électriques (basées sur différents matériaux) pour identifier la résistance de contact la plus faible qu’il est possible d’obtenir. Les processus impliqués, offrant une résistance de contact optimale, doivent être compatibles en vue d’une intégration dans notre plateforme CMOS avancée 200/300mm.
Le Post-Doc étudiera en profondeur les différents mécanismes permettant la formation de faibles résistances de contact entre une couche métallique et une couche de MoS2. Il devra identifier les matériaux les plus prometteurs et développer les procédés de dépôt associés. Enfin, ces études seront couplées à de la caractérisation électrique pour bien qualifier à la fois les matériaux et les interfaces permettant un fonctionnement optimal des transistors MOSFET MoS2.
Etude du retrait sélectif d’alliages métalliques pour la siliciuration avancée des transistors CMOS sub-20 nm
Les performances du transistor CMOS dépendant de la réduction de la résistivité des contacts électriques, l’amélioration du procédé de siliciuration auto alignée est un point clé pour atteindre les exigences de l’ITRS relatives aux futurs noeuds technologiques. La réaction entre une fine couche métallique (Ni1-yPty < 10nm) et le substrat de silicium permet de diminuer les résistances d’accès aux zones source et drain du transistor. Déposé par PVD sur toute la plaque, le métal, sous l’effet d’un traitement thermique, réagit préférentiellement avec les zones semiconductrices plutôt que diélectriques. Le métal non réagi est ensuite gravé dans une solution acide sélective au siliciure métallique. Au vu des nouvelles spécifications (couches ultra fines d’alliages à base de Ni, diminution des budgets thermiques menant à des siliciurations partielles, introduction de nouveaux métaux) requises pour les noeuds technologiques avancés (C20nm et C14nm), la capacité à retirer chimiquement les excès de métal non réagi sur les zones diélectriques doit être évaluée. Dans la salle blanche du CEA-LETI, le candidat sera amené à travailler sur des solutions chimiques innovantes pour graver sélectivement différentes couches métalliques (Ni, Pd, NiCo, NiPd). Les premiers tests conduits sur échantillons permettront d’établir les cinétiques d’attaque et la sélectivité globale sur dispositifs. Avec différentes techniques de caractérisation (TXRF, XRR, AFM, SEM, TEM, XRD), l’interaction des résidus métalliques avec le diélectrique et le comportement de la solution de retrait vis à vis des zones siliciuréees (rugosité, résistivité) seront étudiés. Différents semi-conducteurs (Si, SiGe…) et diélectriques (SiO2, SixNy…) seront investigués. Dans un second temps, les procédés de retrait sélectif les plus prometteurs seront implémentés sur un équipement 300 mm avant d’être intégrés et testés morphologiquement et électriquement sur des substrats comportant des architectures critiques.
Conception de modules photoniques intégrés
La conception de modules de transmission optiques de nouvelles génération (en particulier modules transceivers optiques sur carte) met en jeu l’association de deux technologies de pointes développées au Leti : la photonique sur silicium et le packaging silicium 3D.
Afin de répondre aux objectifs de ces modules en terme de performance, coût et densité, il est nécessaire de réaliser un désign prenant en compte toutes les contraintes techniques: mécanique, optique, thermique mais surtout électronique/RF.
La mission proposée consiste à concevoir de tels modules en optimisant les interconnexions RF internes et externes du module, et la bonne mise en oeuvre des éléctroniques (ASICs) intégrés. La simulation de plusieurs architectures concurrentes (e.g. avec les logiciels HFSS et ADS) permettra d’orienter les choix techniques.
Enfin, il faudra également assurer leur mise en oeuvre dans un système et leur caractérisation en préparant les cartes et bancs de test associés.
Algorithmes en temps réel optimisés pour les Interfaces Cerveau-Machine à plusieurs degrés de liberté
Le sujet de recherche porte sur l’optimisation des algorithmes de l’Interface-Cerveau Machine (ICM) pour des applications médicales chez l’Homme (sujets tétraplégiques).
L’objectif principal pour le candidat post-doc sera d’optimiser/accélérer les calculs pour permettre l’utilisation de plusieurs degrés de libertés (jusqu’à 26) en temps réel. Le choix de caractéristiques appropriées pour les sous-ensembles permettra d’améliorer l’efficacité de calcul et la qualité du contrôle. Pour atteindre ce but, des modèles parcimonieux seront appliqués
Pour analyser les enregistrements ECoG en l’espace temps-fréquence-localisation, une transformée en ondelettes continue est utilisée. L’optimisation comprendra l’implémentation de transformée en ondelettes rapide ainsi que de code C++.
Le projet inclue aussi les tests et adaptations des algorithmes d’ICM à la transmission sans fil de des signaux avec l’implant WIMAGINE.
Finalement, l’adaptation des algorithmes pour l’environnement médical de sujets tétraplégiques (l’utilisation de tâches motrices imaginaires, la présence de stimuli dans le signal, la durée réduite des expériences) sera sous la responsabilité d’un post-doc.
Développement d’une cellule à Metal Support pour la production d’Hydrogène par Electrolyse à Haute Température
Le développement de Cellules à Métal Support (CMS) pour l’Electrolyse à Haute Température (EHT) constitue une innovation intéressante pour limiter les dégradations en fonctionnement de ces composants. L’augmentation de la durée de vie des cellules contribuera à réduire les coûts de revient et à positionner l’EHT comme une alternative réaliste face aux autres technologies de production d’hydrogène. La maîtrise de l’élaboration des CMS constitue toutefois un verrou important. Dans les procédés actuels, les couches fonctionnelles de la cellule sont constituées de matériaux céramiques qui sont assemblées avec le substrat métallique poreux à haute température (> 1000 °C). Les différences de comportement mécanique de ces matériaux ainsi que les conditions réductrices imposées par le métal conduisent aujourd’hui à des cellules dont les performances sont insuffisantes par rapport au cahier des charges. L’objectif du post-doctorat sera d’acquérir une meilleure connaissance des mécanismes intervenant lors de l’assemblage et de proposer et de tester des solutions technologiques pour fiabiliser l’élaboration de Cellules à Métal Support.
Reverse engineering d’une machine électrique commerciale de type synchrone à aimants enterrés dans le rotor et à pôles saillants puis modélisation d’évolutions de cette machine intégrant notamment de nouveaux types d’aimants conçus au CEA.
L’étude concerne l’étude et la modélisation d’une motorisation électrique de type synchrone à aimants enterrés dans le rotor intégrant une nouvelle technologie d’aimants issus du CEA. Cette étude intègre en phase préliminaire une phase de retro engineering et de modélisation d’une machine existante.
Dans le cadre du transport électrique, si les batteries et le moyen de stockage de l’énergie restent le point faible de la chaîne énergétique, le moteur de traction électrique constitue un maillon central qu’il s’agit de dimensionner au mieux afin de gagner en efficacité énergétique. Depuis maintenant vingt ans, toutes les structures de moteur électrique ont été étudiées et testées : du moteur à courant continu à la machine synchrone à aimants permanents en passant par la machine asynchrone et la machine à réluctance variable. Il ressort que la machine synchrone à aimants permanents enterrés dans le rotor est celle qui offre le meilleur rendement, associé à la possibilité d’offrir en pleine charge une puissance constante sur une grande plage de vitesse. On va de plus chercher à augmenter les vitesses de rotation afin de gagner au maximum sur l’encombrement.
Le post doc se scinde ainsi en trois parties :
1ere phase :
Test au banc d’essai moteur CEA d’une machine électrique commerciale à aimants enterrés et démontage de la machine en vue de caractériser ses composants
2eme phase :
Modélisation de la machine commerciale testée au banc moteur et comparaison des résultats de modélisation avec les mesures issues de la 1ere phase
3eme phase :
Conception et modélisation d’évolutions de la machine testée et modélisée dans les phases 1 et 2, en intégrant notamment de nouvelles technologies d’aimants développés au CEA.
Collage direct cuivre et sa fiabilité
La brique technologique de collage direct du cuivre (copper direct bonding en anglais) est l’une des approches les plus prometteuses concernant l’intégration 3-D. Le procédé de fabrication est mature comme présenté par divers travaux pour des approches plaque à plaque (wafer to wafer ou W2W en anglais) mais également dans le cas du puce à plaque (die to wafer ou D2W en anglais). Cependant, sa fiabilité est encore à démontrer même si des premiers résultats montrent que l’approche est prometteuse.
L’objectif de ce post-doc sera de conforter ces premiers résultats obtenus en W2W d’une part et d’autre part, d’étudier la fiabilité de l’approche D2W vis-à-vis des phénomènes d’électromigration et de stress induced voiding.
Le candidat aura en charge toute l’étude de fiabilité en commençant par le lancement des essais et l’analyse des résultats qui en découleront, l’analyse de défaillance (optique, IR, MEB, FIB,…), la détermination du/des mécanismes de dégradation.
Le candidat collaborera avec les doctorants travaillant sur le collage direct du cuivre et son intégration dans des dispositifs. Grâce à son expertise, il proposera des voies d’amélioration du procédé aussi bien d’un point de vue du procédé de fabrication que d’un point de vue géométrique.
Caractérisation électrique et modélisation de mémoires CBRAM (Conductive Bridge Random Access Memory)
Les mémoires CBRAM sont parmi les technologies les plus prometteuses comme alternative aux technologies Flash qui présentent des limites vis-à-vis des futures réductions de dimensions. Les CBRAM ont une structure de type capacitive, où un matériau chalcogénure est pris en sandwich entre une anode active en argent et une cathode inerte. En polarisant la cellule, les ions argent diffusent dans la matrice et atteignent la cathode où ils sont réduits. Un pont conducteur est formé dans la structure, créant une diminution de résistance. Ces structures peuvent fonctionner à très faible tension (~1V).
L’objectif principal du post doc est de mener les études de caractérisation électrique et la compréhension physique associée. L’objectif final est une forte amélioration des caractéristiques d’écriture, d’effacement, de cyclage, de retention d’information. Dans ce but des études approfondies seront menées, en particulier de la conduction et de la retention (mesures en température, lien entre courants et ions diffusées dans la matrice via un premier niveau de modélisation, …) Le candidat adressera à la fois les problèmes hardware et les méthodologies de test. Il étudiera diverses conditions de procédés, de géométries, d’architectures. Une forte interaction sera toujours recherchée avec les spécialistes de la caractérisation physico chimique pour une meilleure connaissance intime des matériaux et cellules.
Développement et application de la technique TERS/TEPL pour la caractérisation avancée des matériaux
Le TERS/TEPL (Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence) est une approche puissante pour la caractérisation des matériaux à l'échelle nanométrique. L'acquisition récente d'un équipement TERS/TEPL unique à la PFNC (Plateforme de Nano-caractérisation) du CEA LETI ouvre de nouveaux horizons pour la caractérisation des matériaux. Cet équipement combine la spectroscopie Raman, la photoluminescence et microscopie en champ proche. Il offre également des capacités multi-longueurs d'onde (de l'UV au proche infrarouge), permettant une large gamme d'applications et offrant des informations inégalées sur la composition, la structure et même les propriétés mécaniques/électriques des matériaux à une résolution nanométrique. Ce projet post-doctorat vise à développer et accélérer la mise en œuvre de cette nouvelle technique à la FPNC afin d'exploiter pleinement son potentiel dans différents projets du CEA (LETI/LITEN/IRIG) et de ses partenaires.