Optimisation combinatoire des matériaux de base dans le cadre du design de nouveaux matériaux
Le design de nouveaux matériaux est un domaine qui connait un intérêt croissant, notamment avec l’apparition des procédés de fabrication additive, de dépôt de couches minces, etc. Afin de créer de nouveaux matériaux dans le but de cibler des propriétés intéressantes pour un domaine d’application, il est souvent nécessaire de mélanger plusieurs matières premières.
Une modélisation physico-chimique des réactions qui se produisent lors de ce mélange est souvent très difficile à obtenir, d’autant plus lorsque le nombre de matières premières augmente. Nous souhaitons nous affranchir autant que possible de cette modélisation. A partir de données expérimentales et de connaissances métiers, le but de ce projet est de créer une IA symbolique capable de chercher à tâtons quel est le mélange optimal pour atteindre une ou plusieurs propriétés données. L’idée est d’adapter des méthodes existantes de recherche opérationnelle, comme l’optimisation combinatoire, dans un contexte de connaissances imprécises.
Nous nous intéresserons à différents cas d’usage comme les batteries électriques, les solvants pour cellules photovoltaïques et les matériaux anti-corrosion.
Modélisation et évaluation de la e-raffinerie CO2 du futur
Dans le contexte de l'atteinte des objectifs de neutralité carbone en 2050, le CEA a porté une initiative de projet en 2021 qui consiste à évaluer la pertinence du couplage entre un système électronucléaire et un dispositif de capture directe du carbone atmosphérique au travers d’une valorisation de la chaleur fatale du système.
Intégré(e) dans une équipe d'une vingtaine d'experts (évaluation des systèmes énergétiques, ingénierie technico-économique, modélisation de systèmes énergétiques, optimisation, programmation informatique), le candidat participera à un projet de recherche concernant la modélisation et l’évaluation d’une raffinerie du CO2 dédiée à la production de Jet Fuel alimentée par un réacteur nucléaire et couplée avec un procédé de capture de CO2 atmosphérique.
Détection de traces de stupéfiants dans la salive par électrochimioluminescence sur électrodes diamant
La consommation de stupéfiants devient un problème pour la sécurité routière car 23 % des décès routiers en France interviennent dans un accident impliquant au moins un conducteur testé positif. Ainsi, un objectif de la sécurité Routière en concertation avec les ministères concernés (Ministère des Transports, Ministère de l’Intérieur, Ministère de la Santé et Ministère de l’Economie) est d’améliorer la lutte contre l’insécurité routière liée à la consommation de stupéfiants. Il s’agit en particulier pour cela d’augmenter et de faciliter les contrôles routiers à l’aide d’un appareil portable dédié au contrôle de l’usage de stupéfiants en bord de route, à l’image de ce qui se fait déjà pour les tests d’alcoolémie à l’aide d’un éthylomètre. Un tel appareil n’est pas aujourd’hui disponible commercialement. Les prérequis principaux de cet appareil seront de fournir des résultats de confirmation fiables, immédiats et ayant valeur de preuve pour les tribunaux ainsi qu’un coût d’achat compatible avec le déploiement à grande échelle sur les réseaux routiers français. Dans ce contexte, le sujet d'étude proposé vise à étudier la détection possible de traces de stupéfiants dans la salive à partir de la méthode d'électroluminescence sur électrode diamant dopé bore. Cette méthode est jugée prometteuse pour une telle application car elle permet potentiellement d’atteindre des seuils de détection extrêmement bas et en accord avec les besoins législatifs, offre de multiples possibilités visant à atteindre une grande sélectivité envers les cibles chimiques, avec une grande capacité de miniaturisation d’équipement et un coût de revient d’appareil et de matières premières relativement faible en comparaison aux outils analytiques de type spectromètre de masse, IMS, etc.
Conception de Machines d'Ising basées sur des réseaux d'oscillateurs spintroniques couplés par circuits CMOS
Le nombre et la complexité des tâches de calculs nécessaires au développement de nos sociétés basées sur l’information et la communication sont de plus en plus importants et pose un problème prégnant en besoin énergétique. Il est ainsi indispensable de proposer de nouvelles architectures matérielles de calculateurs permettant d’améliorer drastiquement leur efficacité énergétique.
Le postdoc contribuera à la réalisation de Machines d’Ising qui sont des architectures de calcul innovantes, inspirées du monde vivant et de la physique et qui permettent de résoudre des problèmes complexes d’optimisation. Dans le cadre du projet ANR SpinIM, le postdoc contribuera à la démonstration d’une machine d’Ising basée sur le couplage électrique de nano-oscillateurs à transfert de spin (Spin Torque Nano Oscillators, STNO). En particulier il aura pour rôle de concevoir la puce CMOS réalisant le couplage paramétrable du réseau d’oscillateurs. Son rôle couvrira la modélisation Verilog A du STNO en se basant sur l’expérience de Spintec et la conception du circuit CMOS de couplage au niveau schématique et son implémentation physique (layout). Le post doc assurera la validation du circuit CMOS en laboratoire et participera à la validation fonctionnelle de la machine d’Ising sur des tâches de calcul d’optimisation. Le post doc se déroulera au sein du laboratoire LGECA qui acquis une expérience dans la co-conception spintronique-CMOS.
Accélérateurs photoniques : L'innovation au service des simulations quantiques
Les circuits photoniques, processeurs spécialisés à faible consommation d'énergie, apparaissent comme l'un des technologies plus prometteuses pour accélérer l'exécution d'algorithmes complexes dans les domaines de l'apprentissage automatique et du calcul scientifique tout en gardant une basse dissipation thermique.
Le succès de la simulation de systèmes quantiques et de la mise en œuvre d'algorithmes de simulation inspirés du quantique sur des unités photoniques laisse entrevoir le potentiel de ces accélérateurs pour faire progresser les capacités de calcul dans les domaines de la chimie computationnelle et la science de matériaux.
Le but de ce projet est d'intégrer les technologies photoniques aux réseaux neuronaux et tensoriels, en repoussant les limites des simulations quantiques et des dispositifs classiques. Cette orientation est prometteuse pour l'avenir de l'innovation algorithmique spécialisée et accélérée par le matériel.
La recherche sera axée sur l'adaptation des algorithmes aux dispositifs photoniques, l'optimisation de la consommation d'énergie et le développement de nouveaux algorithmes inspirés par les spécificités du matériel.
Optimisation des interfaces Li métal/électrolyte pour les nouvelles générations d’accumulateur tout solide
Le CEA Tech Nouvelle-Aquitaine, créé en 2013, a mis en place, depuis plus de deux ans, un nouveau laboratoire sur le développement de matériaux et sur le criblage haut débit pour accélérer la découverte de matériaux pour les nouvelles générations d’accumulateurs au Li. Pour cela, le CEA Tech Nouvelle-Aquitaine a acquis différents équipements de dépôt sous vide (par pulvérisation, évaporation et couche atomique) intégrés en boite à gants et différents outils de caractérisations automatisées (MEB-EDX, profilomètre, DRX, LIBS et microscope confocal à venir).
L’interface entre le Li métal et l’électrolyte constituent l’un des principaux challenges à surmonter pour les nouvelles générations d’accumulateurs tout solide. Les réactions de décompositions à l’interface associées à un processus de dépôt/retrait des ions Li inhomogènes conduisent à une fin de vie prématurée des cellules. L’une des voies explorées pour la stabiliser est d’utiliser une couche de protection qui doit présenter une multitude de propriétés physico-chimiques. Dans ce contexte, ce projet interne CEA a pour objectif de mettre en place une méthodologie de synthèse combinatoire associée à de la caractérisation « haut-débit » pour accélérer la découverte de nouvelles couches de protection à l’interface Li métal/électrolyte.
Nous recherchons un(e) excellent(e) candidat(e) qui sera en charge de mettre en place toute la méthodologie, de la synthèse jusqu’aux caractérisations physico-chimiques et électrochimiques des matériaux. Elle/il aura à sa disposition des nouvelles infrastructures à l’état de l’art et collaborera avec d’autres laboratoires du CEA localisés au LITEN (Grenoble)
Fusion de données 3D issues de tomographie par rayons X et SIMS
Le service de caractérisation des matériaux et des composants du CEA-LETI s’est récemment doté de 2 outils expérimentaux pour effectuer de l’imagerie 3D à des résolutions spatiales atteignant 100nm. Il s’agit de la tomographie X dans un MEB et de la spectrométrie de masse assistée par usinage ionique. La tomographie X donne fournit des images 3D de la morphologie interne d’un objet. Le SIMS 3D fournit également une image 3D avec en plus une information chimique. Ces 2 techniques sont à l’état de l’art et il est envisagé de les associer afin d’obtenir une caractérisation 3D quantitative d’objets tels que les copper pillars en microélectronique, ou des électrodes Si utilisées comme anode dans des batteries Li-ion. Le sujet de post-doc sera centré sur l’analyse de données. Une phase de simulation pourra être envisagée afin d’implémenter et de tester des approches existantes en fusion de données 3D. Ces approches devront être améliorées et adaptées. Il s’agira ensuite de participer aux campagnes de mesure, et de traiter les jeux de données avec les approches précédemment validées. Dans un contexte très pragmatique, un certain goût pour les mathématiques appliquées et la programmation sont indispensables pour appréhender des algorithmes de fusion/reconstruction avec des approches d’abord basiques puis de plus en plus avancées (contraintes, régularisation, supériorisation, fusion Bayesienne,etc). Un docteur (éventuellement ingénieur) physicien étant très à l’aise avec l’informatique (Python, Matlab, C) et le traitement d’image est recherché, ou alors un docteur en mathématiques/informatique intéressé par les applications, dans les 2 cas avec une expérience en caractérisation. Il faudra faire l’interface dans une équipe transverse et donc avoir une certaine ouverture d’esprit et une bonne capacité d’écoute. De bonnes capacités rédactionnelles et orales sont requises (anglais français) pour valoriser les résultats (articles, conférences, brevet, séminaire internes).
Caractérisation électro-optique de dispositifs actifs dans le visible et l’IR
Au sein du Département Intégration Hétérogène Silicium, le Laboratoire des Technologies et Composants pour la Visualisation (DIHS/LTCV)développe des systèmes OLEDs. Une de ces thématiques est axée sur l’élaboration d’OLEDs hybrides, associant dépôts par voie humide et dépôts par évaporation. Les applications visées vont des micro-écrans aux photodétecteurs, en passant par le lighting.
Dans le cadre du développement de son activité "OLEDs hybrides", le DIHS/LTCV recherche un(e) Post-doc en Electronique Organique pour un projet de recherche amont. Dans le cadre de ce poste, vous aurez en charge le développement d’empilements, la mise au point de caractérisation de dispositifs OLEDs. Une optimisation des cavités sera demandée en prenant en compte les caractéristiques des différentes couches.
Parallèlement, des mesures de caractérisations IV, CV, photoluminescence dans les domaines visibles et IR devront être adaptées pour nos applications.
Enfin, l’étude des interfaces par spectroscopie d’impédance et effet Hall pourront être menées.
Synthèse et caractérisation de nouveaux matériaux fluorescents nanostructurés pour la détection de composés organiques volatils.
La présence dans les environnements intérieurs de nombreuses substances et agents (géno-)toxiques, infectants ou allergisants à effets pathogènes n’est plus à démontrer. La détection de ces substances dans l’air intérieur est devenue de fait une préoccupation sanitaire majeure pour nos sociétés. Pour répondre à ce besoin et permettre la mise au point de capteurs de « terrain » sensibles et sélectifs, différentes solutions technologiques sont à l’étude. Parmi ces méthodes, celles qui exploitent les phénomènes de fluorescence sont particulièrement intéressantes en raison de leur sensibilité élevée (limite basse de détection) et des possibilités qu’elles offrent de mettre au point des dispositifs bas coût, de faibles dimensions et faiblement consommateur d’énergie.
Le projet proposé s’inscrit dans ce contexte et vise à évaluer les potentialités d’une nouvelle famille de matériaux organiques fluorescents nanostructurés pour la détection de
traces de polluants de l’air intérieur. Le travail proposé sera mené en collaboration avec le Laboratoire de Chimie des Polymères (UMR7610-CNRS/UPMC Paris 6) spécialisé dans la
synthèse d’organogels fonctionnalisés. Il s’agira plus précisément de mettre au point la synthèse de nouveaux polymères supramoléculaires hautement poreux qui serviront soit de support à un matériau fluorescent sensible, soit fonctionnalisés de telle sorte qu’ils puissent assurer directement la reconnaissance et la détection des molécules cibles. Les propriétés physico-chimiques des matériaux ainsi réalisés seront examinées par différentes techniques. Leurs performances en présence des polluants cibles (formaldéhyde, acétaldéhyde) et d’interférents potentiels seront évaluées. Enfin, les matériaux les plus intéressants seront intégrés dans un prototype fonctionnel.
Développement d’une plateforme logicielle pour la simulation de systèmes énergétiques
L’évolution des réseaux d’énergie vers les « smart-grid », avec notamment une forte pénétration de production de sources renouvelables, ainsi que le déploiement de systèmes de stockage, entraine une augmentation de la complexité de leur conception et de leur optimisation nécessitant de nouveaux outils de modélisation et de simulation. En particulier, ces outils devront être en mesure de considérer diverses sources d’énergie, divers vecteurs énergétiques et diverses technologies de conversion énergétique. De plus, ils devront également répondre à un besoin de simulation pour le dimensionnement optimal de systèmes énergétiques, et la conception de lois de gestion pour leur opération.
En effet, les outils de modélisation et de simulation disponibles aujourd’hui ne répondent que partiellement à cette problématique ; c’est pourquoi l’objectif du projet est de développer une plateforme de simulation, qui réponde aux besoins cités précédemment (multi-sources, multi-énergies, multi-technologies). Cette plateforme sera architecturée de façon à favoriser son ouverture et maximiser ses capacités à être transférée vers des acteurs industriels.
La problématique de réseaux multi-énergies devra pouvoir être prise en compte et la possibilité laissée à l’utilisateur d’intégrer ses propres modèles ou lois de gestion sera considérée.
Le projet se focalise sur l’architecture de la plateforme et sur la modélisation de cette architecture. Un outil logiciel de simulation sera développé à partir de l’architecture proposée. L’objectif de ce développement n’est pas de couvrir l’ensemble des applications que doit couvrir la plateforme, mais plutôt de valider la cohérence du modèle de l’architecture à travers une application ciblée.