Etalonnage dosimétrique du système de monitorage d'un faisceau de Flashthérapie à ultra haut débit de dose de l’installation IRAMIS
Les faisceaux dit Ultra-flash sont des faisceaux pulsés d’électrons de haute énergie (plus d’une centaine de MeV) dont la durée des impulsions est de l’ordre de la femto-seconde. L’installation IRAMIS (CEA saclay) utilise l’accélération laser pour produire ce type de faisceaux avec ne vue leur application à la radiothérapie. Le LNHB est chargé d’établir la traçabilité dosimétrique de l’installation IRAMIS, pour ce faire il doit étalonner le moniteur de cette installation. Les installations de radiothérapie actuelles sont fondées sur des accélérateurs linéaires médicaux fonctionnant avec des énergies atteignant 18 MeV en mode électron. Le LNHB dispose d’un tel équipement. Il est utilisé pour établir les références nationales en termes de dose absorbée dans l’eau, dans les conditions décrites dans le protocole AIEA TRS 398
L’établissement de la traçabilité dosimétrique implique de choisir les conditions de mesure sur l’installation, de connaitre les caractéristiques du dosimètre utilisées pour le transfert et les éventuelles corrections à appliquer aux mesures compte tenu des différences entre l’installation IRAMIS et celle du LNHB.
Optimisation d’une approche métrologique pour l’identification de radionucléides basée sur le démélange spectral
Le Laboratoire national Henri Becquerel (LNE-LNHB) situé au CEA/Saclay est le laboratoire responsable des références françaises dans le domaine des rayonnements ionisants. Depuis quelques années, il est impliqué dans le développement d’un outil d’analyse automatique des spectres gamma à faible statistique fondé sur la technique du démélange spectral. Cette approche permet notamment de répondre aux contraintes métrologiques telles que la robustesse de la prise de décision et l’estimation non biaisée des comptages associés aux radionucléides identifiés. Pour étendre cette technique à la mesure de terrain et en particulier à la déformation des spectres due aux interactions dans l’environnement d’une source radioactive, un modèle hybride de démélange spectral combinant des méthodes d’apprentissages statistique et automatique est en cours de développement. Cette solution mathématique a pour but l’implémentation d’une estimation conjointe des spectres mesurés et des comptages associés aux radionucléides identifiés. L’étape suivante sera la quantification des incertitudes des grandeurs estimées à partir du modèle hybride. L’objectif est également d’investiguer la technique du démélange spectral dans le cas de la détection des neutrons avec un détecteur NaIL. Le futur candidat contribuera à ces différentes études dans le cadre d’une collaboration avec le Laboratoire d’ingénierie logicielle pour les applications scientifiques (CEA/DRF).
Etude de la performance et du vieillissement de batterie lithium ion operando par mesures multi-instrumentée externes
Le poste proposé ici porte sur le développement et la mise en œuvre de techniques de caractérisation in-situ et operando utilisant des capteurs externes à la cellule. Le candidat sera amené à tester et mettre au point des techniques de mesures externes sur cellules Li-ion afin de mesurer les paramètres critiques. Il participera au choix des capteurs, à l’instrumentation des cellules, à leurs mises en œuvre dans différentes conditions de cyclage et à l’étude de leurs performances et vieillissement. Il participera à l’analyse des données ainsi qu’à l’étude post-mortem des cellules afin d’identifier les mécanismes de dégradation et effectuer la corrélation entre les mesures issues des capteurs et les phénomènes observés. Le présent post-doctorat s’inscrit dans un travail d’équipe composé d’électro-chimistes, de physiciens, de chimistes et d’opticiens. Il se concentrera sur l’instrumentation externe de la cellule et travaillera en étroite collaboration avec une équipe composée de plusieurs ingénieurs, chercheurs, doctorants et postdoctorant. L’objectif de ces travaux est de fournir un ensemble de données fiables sur les mécanismes de dégradation des cellules et leur monitoring afin d’alimenter les travaux qui seront réalisés dans le cadre du projet SENSIGA sur la mise en place de fonctions avancées du Batterie Management System (BMS).
Le poste est à pourvoir au sein du laboratoire d’Analyse Electrochimique et Post-Mortem du LITEN au CEA de Grenoble et se fera en collaboration avec Nicolas Guillet (LITEN/L2SA sur le site de l’INES) pour la partie de capteurs acoustiques.
Développement d'Algorithmes pour la Détection et la Quantification de Biomarqueurs à partir de Voltammogrammes
L'objectif du post-doctorat est de développer une solution algorithmique et logicielle performante permettant la détection et la quantification des biomarqueurs d'intérêt à partir de voltammogrammes. Ces voltammogrammes sont des signaux unidimensionnels issus de capteurs électrochimiques innovants. L'étude sera réalisée en étroite collaboration avec un autre laboratoire du CEA-LIST, le LIST/DIN/SIMRI/LCIM, qui proposera des capteurs électrochimiques dédiés et novateurs, ainsi qu'avec la start-up USENSE, qui développe un dispositif médical permettant la mesure de plusieurs biomarqueurs dans l'urine.
Reconstruction tomographique par rayons X basée sur des méthodes analytiques et Deep-Learning
Le CEA-LIST développe la plateforme logicielle CIVA, référence de la simulation des procédés de contrôle non destructif. Elle propose notamment des outils pour l’inspection radiographique X et tomographique qui permettent, pour un contrôle tomographique donné, de simuler l’ensemble des projections radiographiques (ou sinogramme) en prenant en compte divers phénomènes physiques associés, ainsi que la reconstruction tomographique correspondante.
Le travail proposé s’intègre dans la contribution du laboratoire à un projet européen qui porte sur l’inspection tomographique de containers de transport de marchandise avec des systèmes d’inspection utilisant des sources de haute énergie. Les contraintes spatiales de l’étape d’acquisition des projections (les camions transportant les containers passent dans un portique d’inspection) impliquent une adaptation de la géométrie du système source/détecteur et par conséquent de l’algorithme de reconstruction correspondant. De plus, le système ne peut générer qu’un nombre de projections réduit, ce qui rend le problème mal posé dans le contexte de l’inversion.
Les contributions attendues portent sur deux aspects distincts de la méthodologie de reconstruction à partir des données acquises. D’une part, il s’agit d’adapter les méthodes de reconstruction analytiques à la géométrie d’acquisition spécifique de ce projet, et d’autre part de travailler sur des méthodes permettant de pallier le manque d’information lié au nombre limité de projections radiographiques. Dans cet objectif, des méthodes d’apprentissage supervisé, plus spécifiquement par Deep-Learning, seront utilisées à la fois pour compléter le sinogramme, et pour réduire les artéfacts de reconstruction causées par le faible nombre de projections disponible. Une contrainte d’adéquation aux données et au système d’acquisition sera également introduite afin de générer des projections physiquement cohérentes.
Développement d’un outil de spectrométrie neutron pour la caractérisation de sources neutroniques à base de radionucléides
Depuis quelques années, le LNHB développe un nouveau dispositif de spectrométrie neutron baptisée AQUASPEC et dédié la caractérisation de sources neutrons à base de radionucléide (ex. AmBe, PuBe, Cf-252). Le dispositif est constitué d'un récipient en polyéthylène, équipé d’un canal central dans lequel la source est placée, et de 12 voies de mesures pouvant accueillir des détecteurs (scintillateur plastique (SP) discriminant dopé au 6Li). Lors de la mesure, le récipient est entièrement rempli d’eau afin de garantir la modération des neutrons émis par la source et une sensibilité moindre à l’environnement extérieur. Les détecteurs sont positionnés autour de la source afin de réaliser des mesures à différentes distances de modération. Les comptages obtenus sont traités par un algorithme itératif dédié aux déconvolution des données, sur la base d’un algorithme itératif de type ML-EM ou MAP-EM. Le candidat travaillera sur les problématiques de mesures de spectre neutrons au sein du laboratoire. Il participera à des campagnes de mesures de sources et travaillera sur les aspects de détection des neutrons, de traitements de données notamment la problématique de discrimination neutron gamma, ainsi que les méthodes de déconvolution de données et de reconstruction de spectre. Une attention particulière sera portée sur l’optimisation de la caractérisation des sources, avec l’intégration de l’information liée aux coïncidences neutron gamma spécifiques aux sources de type XBe.
Conception du packaging des modules PV de haute performance
La durée de vie de nouvelles générations de modules photovoltaïques est de 25-30 ans en conditions externes. Le packaging joue un rôle critique pour répondre à ses exigences de fiabilité et de durabilité. Les cellules solaires sont protégées par du verre en face avant et des couches plastiques complexes sont employées comme encapsulant en face avant et arrière, en contact avec la face arrière. Les encapsulants ont de multiples rôles; forment une couche barrière contre l’humidité, oxygène, radiation ultra-violet, assurent l’isolation électrique et la protection mécanique des plaquettes de silicium fragiles tout en gardant une transparence optique élevée. Le procédé de fabrication industriel des modules est la lamination, qui impose des exigences supplémentaires pour la formulation des encapsulants.
L’objectif de ce post-doc est d’établir une corrélation entre les propriétés des matériaux, leur mise en forme et le comportement thermo-mécanique des modules innovants avec des cellules hétérojonctions, back-contact ou silicium/pérovskite tandems. La caractérisation avancée des polymères sera étroitement déployée lors de cette étude utilisant notamment DSC, DMA, adhésion, ATG, WVTR, extraction Soxhlet etc. La corrélation entre les paramètres de la lamination et la tenue mécanique des panneaux constituera un des axes majeurs de recherche. Le choix des encapsulants et de tous les matériaux sera fortement guidé par l’éco-conception pour réduire l’impact environnementale du packaging et augmenter la recyclabilité, et renforcer le ré-emploi des plastiques. Ce post-doc s’inscrit dans une collaboration européenne sur le sujet.
Étude et modélisation de récepteurs acoustiques à réseaux de Bragg sur fibre optique
Le CEA List travaille depuis plusieurs années sur le développement de solutions de monitoring avancées exploitant des récepteurs acoustiques sur fibres optiques appelés réseaux de Bragg. Ces capteurs optiques présentent un fort potentiel pour la surveillance des structures à la fois par leur capacité d’intégration au sein des matériaux (béton, composite organique, métal) et leur capacité à être déployés en environnement difficile (embarqué, radiatif, haute température).
Un travail de postdoctorat est proposé afin de mener des travaux de modélisation de ces transducteurs à réseaux de Bragg en vue d’affiner la compréhension de leur sensibilité vis-à-vis des ondes élastiques guidées ultrasonores et d’aider au design d'un système de contrôle associé grâce à un placement intelligent des capteurs. In fine, l’objectif est de pouvoir simuler leur réponse au sein du logiciel de Contrôle Non Destructif Civa développé par le CEA List, et plus particulièrement via son module dédié au Structural Health Monitoring (SHM). Un tel travail contribuerait fortement à l’adoption et l’exploitation de cette technologie pour des applicatifs en Structural Health Monitoring.
Biocatalyse par microfluidique
L’objectif global du projet est de proposer un nouveau mode de production biocatalytique basé en flux continu et combinant macro et micro-fluidique. Il s’agit de développer un procédé de biocatalyse impliquant des bioréacteurs fluidiques capables d’assurer une biotransformation en mode continu, grâce à des enzymes ou des cellules immobilisées. Ce procédé sera optimisé pour d’une part améliorer l’efficacité de réactions enzymatiques et d’autre part obtenir des capacités importantes de production. Deux types d’enzymes seront étudiées, les nitrilases et les cétoreductases.
D'abord, le ou la candidat(e) sera chargé(e) de la recherche d’enzymes robustes pour les réactions cibles et du criblage sur les substrats définis. Il ou elle sera chargée de la mise au point des conditions réactionnelles en enzymes isolées et cellules entières et de la détermination des cinétiques apparentes. Ensuite, il/elle sera chargé(e) de la mise en place des conditions de fonctionnement de la biocatalyse et de l'immobilisation du biocatalyseur dans des réacteurs continus polyvalents.
Ce sujet est réalisé entre deux départements du CEA (Direction de la Recherche Fondamentale/IBFJ/Genoscope à Evry et Direction de la Recherche Technologique/Leti à Grenoble).
Le ou la candidat(e) travaillera en binôme avec un(e) étudiant(e) en thèse sur la conception du réacteur biocatalytique et la mise à l'échelle du processus biocatalytique.
Développement de matériaux silicium résistants aux irradiations et intégration dans des cellules photovoltaïques pour applications spatiales
Historiquement, le photovoltaïque (PV) s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires multi-jonctions, basées sur un empilement de matériaux III-V, ont progressivement remplacé le silicium (Si), bénéficiant de performances et de tenues aux irradiations électrons/protons supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût (€/W Si ~ III-V/500), émergence de nouvelles technologies Si qui présentent des rendements élevés sur Si de type p… Dans l’espace, les cellules solaires PV sont exposées aux rayonnements cosmiques, notamment aux bombardements par des protons et électrons. Ces irradiations affectent les performances des cellules Si, essentiellement en raison de la formation de défauts volumiques recombinants pour les porteurs de charge. Afin de favoriser l’utilisation de cellules Si dans l’environnement spatial, il est donc essentiel d’améliorer leur résistance aux irradiations. Il s’agit du principal enjeu de ce projet de post-doc. Pour cela, les travaux vont tout d’abord se concentrer sur l’élaboration d’un nouveau matériau silicium, avec des propriétés compositionnelles lui conférant une résistance accrue aux irradiations par les électrons. Plus précisément, le matériau contiendra des éléments limitant la formation de défauts volumiques sous irradiations, et développant des effets de passivation électrique. Les propriétés électroniques de ce matériau seront évaluées et analysées avant et après irradiation. Dans un second temps, des cellules haut rendement à hétérojonction seront élaborées à partir de ce silicium inédit, et leurs performances électriques évaluées et analysées avant et après irradiation. Les développements pourront être appuyés par des simulations numériques, effectuées à l’échelle des dispositifs PV.