Developement de la technologie FDSOI au delà du noeud 10nm
Le FDSOI est reconnue comme une technologie prometteuse pour les applications mobiles, l’IOT ainsi que pour les applications radiofréquences pour les futurs nœuds technologiques [1]. Le LETI est un pionnier dans la technologie FDSOI ce qui lui permet d’apporter des solutions innovantes afin de soutenir des partenaires industriels.
La réduction d’échelle du FDSOI au delà du nœud 10nm offres de nouvelles perspectives en termes de SOC et de performances RF. En revanche d’un point de vue intégration cela pose de nouveaux challenges. En effet le réduction de l’épaisseur du canal en dessous de 5nm devient difficile car il faut garantir une bonne mobilité des porteurs tout en conservant une bonne variabilité. Ainsi, l’introduction de solutions technologiques innovantes comme booster de performances devient nécessaire (Stress dans le canal, architectures alternatives de grille, optimisation des capacités parasites, le tout en tenant compte des règles de dessin de plus en plus agressives [2]).
La viabilité de ces nouveaux concepts devra être validée dans un premier temps par simulations TCAD et ensuite implémentés sur des lots 300mm.
Ce sujet est en ligne parfaite avec la nouvelle stratégie du LETI ainsi qu’en total accord avec l’annonce des futurs investissements [3].
Le candidat sera en charge des simulations TCAD pour définir les variantes à intégrer sur les lots jusqu’à la caractérisation électrique. Les simulations TCAD seront faites en collaboration avec l’équipe TCAD du LETI. Le candidat devra faire preuve d’innovation, de dynamisme, un bon relationnel pour travailler en équipe est indispensable.
[1] 22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications, R. Carter et al, IEEE IEDM 2016.
[2] UTBB FDSOI scaling enablers for the 10nm node, L. Grenouillet et al, IEEE S3S 2013.
[3]https://www.usinenouvelle.com/article/le-leti-investit-120-millions-d-euros-dans-sa-salle-blanche-pour-preparer-les-prochaines-innovations-dans-les-puce
Report de composants de puissance pour amélioration des performances
Une thèse actuellement dans le laboratoire a permis de démontrer l’intérêt du report d’un HEMT de puissance en GaN sur une embase métallique en cuivre vis-à-vis du self heating sans dégrader la tenue en tension du composant.
Il y a encore beaucoup de points à étudier pour améliorer au mieux les composants de puissance.
Actuellement des labos comme l’IEMN, HKUST et MIT s’intéressent à ce procédé et étudient des solutions connexes.
Nous proposons de comprendre quelle est la meilleure intégration à faire pour éliminer le self-heating et augmenter la tenue en tension du composant initial. L’impact sur la polarisation du GaN et sur la qualité du gaz 2D sera analysée.
La même approche pourra être faite si besoin sur les composants RF.
Différents empilements seront réalisés par le post-doc et il aura en charge de réaliser les caractérisations électriques. La compréhension du rôle de chaque partie de la structure sera primordiale pour décider de l’empilement final.
Ce procédé sera également amené en grandes dimensions.
Ce post-doc travaillera si besoin en collaboration avec les différentes thèses sur les composants de puissance.
Jonction tunnel pour LEDs UV: caracterisation et optimisation
Au-dela des lampes UV actuelles, les LEDs émettant dans le domaine de l’UV-C (autour de 265 nm) sont considérées comme la solution à moyen terme pour les systèmes de traitement de stérilisation de l’eau. Mais les LEDs UV-C, à base de matériaux du type AlGaN et de leurs hétérostructures à puits quantiques sont encore de trop faible efficacité pour leur utilisation dans des systèmes industriels.
L’analyse des raisons qui sous-tendent cette faible efficacité nous ont amenés à proposer une solution basée sur l’utilisation de jonctions tunnel insérées dans l’hétérostructure. L’utilisation de jonctions tunnel p+ / n+ permet d’adresser les problèmes liés au dopage des matériaux grands gaps, mais donne lieu à une résistance tunnel qui doit être diminuée autant que possible. Le travail post-doctoral est dédié à la compréhension des processus tunnel à l’œuvre dans la jonction pour un meilleur contrôle de la résistance tunnel.
Le travail post-doctoral sera effectué sur la Plate-Forme de Nano-Caractérisation au CEA/ Grenoble, en faisant appel à différents types de caractérisation structurale, optique et électrique, sur de simples jonctions ou sur des jonctions insérées dans les LEDs UV. Le (la) candidat(e) interagira fortement avec l’équipe du CNRS/CRHEA à Sophia Antipolis où seront épitaxiées les structures. Le travail s’inscrit dans le cadre d’un projet collaboratif « DUVET » financé par l’ANR.
Conception en vue de la fiabilité des composants microélectroniques numériques
Les mémoires non-volatiles de type flash sont un élément clé pour le développement des applications haute-température dans l’aérospatial, l’industrie automobile et l’industrie du forage. Malheureusement, le temps de rétention des mémoires flash est fortement dégradé par la haute-température et peut être considérablement diminué même à des températures plus modérées, particulièrement dans le cas où il faut stocker plusieurs bits par cellule. Cet effet peut être estompé à travers un rafraîchissement périodique des données. Le problème est que, en présence des variations de température dues à un changement des conditions environnementales et/ou de charge de travail, une fréquence de rafraîchissement fixe doit être adaptée au pire cas et risque d’entraîner des pertes en termes de performance et endurance.
Le premier objectif de ce projet est d’implémenter une méthode de rafraîchissement basée sur l’utilisation d’un compteur permettant de : (a) suivre l’évolution de l’impact de la température sur le temps de rétention des mémoires flash, (b) générer des alertes sur l’imminence d’une perte de données et (c) fournir des timestamps.
Le deuxième objectif du projet est de déterminer la loi qui gouverne l’évolution avec le temps des fautes de rétention dans une mémoire flash. Le but est l’implémentation d’une technique capable de déterminer le temps de rétention restant de chaque page mémoire en fonction de l’âge de rétention, i.e. le temps écoulé depuis le stockage des données, et le nombre des erreurs de rétention et non-rétention.
Le travail du post-doctorant inclura la publication des résultats scientifiques dans des conférences internationales et journaux de haut niveau.
Simulation de nanofils semi-métalliques
La mission du candidat sera :
• Simulation utilisant des outils ab-initio de la structure de bandes de nanofils de bismuth de différent diamètres (de 1 nm à 10 nm).
• Extraction de paramètres tes que masses effectives, densité d’états, band offsets pour ces nanofils.
• Implémentation de ces paramètres dans un simulateur NEGF pour simuler des transistors en nanofils de bismuth à diamètre variable.
• Simulation ab-initio de l’interface nanofil de bismuth – diélectrique et étude de différents éléments de passivation chimique.
• Ce travail se fera en collaboration avec le groupe LETI/DCOS/SCME/LSIM (Philippe Blaise)
• Le candidat interagirera avec une équipe expérimentale qui fabriquera les dispositifs simulés et sera amené à aider à encadrer un ou plusieurs doctorants, en collaboration avec IMEP.
• Le candidat interagirera avec le LTM pour les aider à prédire les propriétés de l’interface bismuth-isolant de grille et pour implémenter dans le simulateur les résultats de mesures sur ces interfaces (IMEP).
Développement d’un microscope bimodal Brillouin-Raman pour la caractérisation des tissus biologiques
Le Laboratoire d’Imagerie et des Systèmes d’Acquisition (LISA) et le Laboratoire de Physique du Cytosquelette (LPCV) du CEA Grenoble proposent un projet pour mettre en place et caractériser une nouvelle modalité d’imagerie biologique combinant la spectroscopie Brillouin à la spectroscopie Raman. Il s’agit d’un projet interdisciplinaire entre instrumentation et biologie. La spectroscopie Brillouin permet la mesure non-invasive des propriétés visco-élastiques des cellules et tissus à l’échelle micrométrique, tandis que la spectroscopie Raman donne une information biochimique complémentaire. Ces mesures ont des applications dans l’étude de l’organisation du cytosquelette, et pour de nouveaux outils de diagnostique basés sur la détection précoce des altérations mécaniques et biochimiques des tissus.
Le postdoc sera responsable du développement et du couplage du spectromètre Brillouin au microscope Raman du LISA. Cela inclut le développement du système optique, le pilotage de l’instrument, et l’analyse des données. Il/Elle caractérisera l’instrument sur des systèmes reconstitués préparés au LPCV, puis s’attachera à des mesures in-cellulo. Le candidat retenu coordonnera les travaux entre le LPCV et le LISA.
Etude la physisorption d’espèces chimiques sur des surfaces sensibles lors des transferts en mini-environnement contrôlés en microélectronique
Une plateforme de caractérisation basée sur le concept de connexion entre équipements de procédés et de caractérisation par l’intermédiaire d’une valise de transfert sous vide a été montée permettant une caractérisation quasi in-situ des substrats et matériaux de la microélectronique. Ce concept de transfert, basé actuellement sur le simple vide statique dans une valise est satisfaisant vis-à-vis du taux résiduel de O et C à la surface de matériaux particulièrement sensibles (Ge, Ta, Sb, Ti, …) et les croissances par MOCVD sur les GST ou les III/V, ou l’analyse des couches réactives après gravure plasma. Son optimisation pour des applications plus exigeantes (collage moléculaire, reprise épitaxie) en termes de préservation des surfaces nécessite de mieux comprendre l’évolution physico chimie des surfaces.
Le travail proposé portera sur des études physico chimiques de l’évolution et de la contamination moléculaire des surfaces lors des transferts et se déroulera en salle blanche. L’XPS, la TD-GCMS et la spectrométrie de masse sur la boite elle-même (à implémenter), seront utilisés pour adresser l’origine (parois, joints, environnement gazeux, …) des espèces chimiques adsorbées et déterminer les mécanismes de physisorption à la surface des substrats. Les surfaces étudiées seront suffisamment sensibles à la contamination pour extraire l’influence de l’environnement de la boite et les paramètres explorés seront la nature des joints utilisés, l’influence de l’étuvage de la boite, le niveau de vide, l’utilisation d’un mini environnement gazeux à basse pression dans la boite (nature du gaz, pression,…)
Réalisation par laser femtoseconde de récepteurs acoustiques à réseaux de Bragg pour la Surveillance Santé des Structures par tomographie acoustique passive
Le sujet de post-doctorat proposé s’inscrit dans le cadre d’un projet transversal initié par le CEA et qui consiste à développer un prototype de système de surveillance en continu d’une structure métallique (une conduite par exemple) par chapelets de récepteurs acoustiques à réseaux de Bragg fibrés et par imagerie passive (ou tomographie passive). Il vise à démontrer la pertinence du concept de SHM (Structural Health Monitoring) pour le nucléaire à l’aide de capteurs opérant en continu et en environnement extrême. Ce projet s’appuie sur deux développements récents : les réseaux de Bragg de nouvelle génération développés pour environnement sévère et les algorithmes d’imagerie de défauts à partir de l’analyse du bruit ambiant. Une démonstration de principe de la mesure passive d’ondes élastiques par réseaux de Bragg a été effectuée au CEA en 2015, ce qui constitue une première mondiale, brevetée. Le projet vise plus particulièrement à réaliser un démonstrateur et à équiper une canalisation sur boucle d’essai. Il fournira des données d’entrée relatives à la capacité d’un fluide en mouvement à générer des ondes élastiques analysables en tomographie passive.
Développement de panneaux solaires flexibles pour applications spatiales
Les panneaux solaires utilisés conventionnellement pour alimenter en énergies les satellites sont encombrants et reliées entre eux par de lourdes pièces mécaniques. Plus légers et plus compacts, les panneaux solaires flexibles consistent en une peau souple servant de support aux cellules solaires qui transforment la lumière en électricité. Etant flexibles, les panneaux solaires pourraient s’enrouler ou se plier, sans l’aide de moteurs, les rendant ainsi moins lourds et coûteux que les panneaux solaires conventionnels.
D’un autre côté, le secteur des satellites est en train de migrer d’une configuration mono satellitaire à une configuration de constellation de satellites. Ces dernières années, le besoin de production de masse de satellites légers s’est accru. Les fabricants de panneaux solaires sont mis à l’épreuve sur leur capacité à affronter ces nouveaux besoins en termes de capacité de production et d’adaptabilité de leurs lignes de production. C’est exactement sur ces points que le photovoltaïque spatial peut apprendre du photovoltaïque terrestre.
Pour affronter ces nouveaux défis, le Liten a commencé à travailler sur ces sujets il y a plus de deux ans. Dans le cadre de ce post-doc, nous proposons de développer une architecture innovante de panneau solaire flexible en utilisant des procédés de fabrication à fort potentiel industriel. Nous cherchons pour cela un candidat avec une forte expérience dans le domaine des polymères et de leur mise en œuvre, avec aussi une expérience en mécanique. Toute expérience antérieure dans le photovoltaïque sera avantageusement considérée.
Sécurisation énergétiquement efficace de fonctions de sécurité pour l’IoT en technologie FDSOI 28nm
La sécurité des objets connectés doit être efficace en énergie. Or, la plupart des travaux
autour de la sécurisation par la conception montrent un surcoût, d’un facteur
multiplicatif de 2 à 5, en surface, en performance, en puissance et en énergie, qui ne
satisfait pas les contraintes de l’IoT. Ces 5 dernières années les efforts de recherche
sur la sécurisation ont été guidés par la réduction de la surface silicium voire de la
puissance, ce qui n’implique pas toujours à une diminution de l’énergie, critère
prédominant dans les objets connectés autonomes. Le sujet de post-doc vise la sécurisation
vis à vis d’attaques potentielles, et l’optimisation en consommation énergétique, de
l’implémentation de fonctions de sécurité (capteurs de détection d’attaques, accélérateur
cryptographique, générateur de nombre aléatoire, etc.) en technologie FDSOI 28nm.
A partir de la sélection de briques de sécurité non sécurisées, disponibles sur FPGA, le
post-doc explorera les solutions de sécurisation à tous les niveaux du flot de conception
afin de proposer et de valider, dans un démonstrateur silicium, les contre-mesures les
plus efficaces en énergie tout en garantissant le niveau de sécurité choisi.