Etude d'une plateforme d'étalonnage des diagnostics plasma de rétrodiffusion
Ce post-doctorat s'inscrit dans un objectif long terme de disposer de mesures robustes et précises des effets des instabilités paramétriques qui peuvent se développer dans le cadre des expériences de fusion par confinement inertiel en attaque directe et indirecte sur le Laser MégaJoule. Un nouveau schéma expérimental est à l'étude pour étalonner finement plusieurs voies de mesure qui permettent aujourd'hui et qui pourraient permettre demain de mieux quantifier en 3D l'énergie perdue par ces mécanismes de couplage non linéaire de l'onde électromagnétique laser incidente avec les ondes plasmas générées au moment de l'interaction. Ce schéma expérimental novateur s'inspire fortement d'une plateforme existante sur le NIF qui met en oeuvre des feuilles d'or en centre chambre jouant le rôle de miroir plasma.
L'objectif de ce post-doctorat est de maîtriser l'ensemble des paramètres (laser, cible, physique, mesure) qui aboutissent à la réussite de la calibration des diagnostics de rétrodiffusion sur le LMJ et des nouvelles voies de mesure qui seraient identifiées au cours du post-doctorat. Le(la) candidat(e) pourra développer ses connaissances théoriques et pratiques en physique de l'interaction laser plasma à haute énergie / haute densité et en coordination des équipes qui conduisent les expériences sur une installation de recherche de grande dimension. Une partie du post-doctorat sera dédiée à la maîtrise des codes qui permettent la simulation des phénomènes physiques activés.
Simulation d'effondrements de terrain et des vagues associées par un code 3D
Jusqu’à présent, les tsunamis générés par des effondrements de terrain sous-marins étaient modélisés au CEA par un code d’ondes longues 2D (Avalanche) adapté alors aux moyens de calcul mais qui, aujourd’hui, semble obsolète dans la littérature. Un premier post-doctorat (2023-2025) a montré que l’outil 3D OpenFoam permettait de simuler avec précision un effondrement de terrain et les vagues associées dans la zone de génération. Au cours de ce post-doctorat, un couplage entre le code CEA de propagation "2D" (Taitoko) et le code 3D a été mis au point de façon à propager les vagues à longue distance. Les travaux effectués seront poursuivis. Le premier objectif sera de se familiariser avec les outils mis au point et de publier le travail effectué sur l’effondrement de 80 Mm3 qui s’est produit en 1979 à Mururoa. L'objectif principal est ensuite de réaliser des simulations d’effondrements potentiels en zone Nord, sachant que la principale difficulté est de définir la géométrie de ces effondrements potentiels. La propagation des vagues sur de longues distances est simulée par un code tsunami "2D" couplé au code OpenFoam.
Etude de l'amorçage multipoints d'explosifs. Expériences et simulations
La conception de systèmes performants et toujours plus sûrs, nécessite d’imaginer de nouvelles solutions pour amorcer les explosifs qui en constituent la charge. Une piste envisageable consiste à remplacer l'amorçage électrique des détonateurs par un amorçage optique afin de s’affranchir des risques d'amorçage par des sources électriques parasites.
Une autre voie possible pour gagner en sûreté, consiste à réaliser un amorçage multipoints de telle sorte que l’explosif ne détonne que lorsque tous les points d’amorçage sont activés de façon synchrone.
L’objectif du contrat post-doctoral sera d’étudier de façon approfondie les mécanismes régissant l’amorçage multipoints. Pour cela, le candidat, après une recherche bibliographique exhaustive, proposera les configurations a priori les plus pertinentes et les testera à la fois expérimentalement et en réalisant des simulations hydrodynamiques avec un code développé au CEA. La compréhension des phénomènes mis en jeu est primordiale pour être en mesure de choisir une configuration d’amorçage adaptée à chaque besoin.
Etude de la diode et du tube anodique d’un injecteur à induction
La Direction des Applications Militaires du CEA utilise la radiographie éclair pour caractériser l’état de la matière soumise à des chocs forts ou à une densification importante sous l’effet d’explosifs. Dans de telles conditions extrêmes, le succès des expériences de radiographie éclair nécessite des sources de rayonnement X impulsionnelles de faibles dimensions spatiales (quelques mm), brèves (environ 60 ns), fortement pénétrantes (quelques MeV) et intenses (plusieurs rads). De telles sources sont produites à partir du rayonnement de freinage créé par une impulsion brève et intense d'électrons (plusieurs kA) de haute énergie dans un matériau cible. L’installation radiographique EPURE du CEA exploite deux Accélérateurs Linéaires à Induction (LIA) comme sources de radiographie éclair.
Elaboration et caractérisation d'un matériau composite oxyde/oxyde
Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une bonne tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un procédé d’élaboration de CMC oxyde/oxyde à fibres longues et/ou courtes possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Modélisation « particle-in-cell » des collisions élastiques dans les plasmas denses et froids et application aux interactions faisceau-plasma et laser-plasma
La méthode « particle-in-cell » (PIC) est largement utilisée pour simuler la cinétique de plasmas soumis à d'intenses faisceaux laser ou de particules. Les codes PIC modernes intègrent désormais couramment des modules supplémentaires décrivant des processus de physique atomique, mais leur précision est discutable dans les milieux relativement froids (à des températures inférieures à quelques dizaines d'eV) et denses (proches de la densité d'un solide).
Ce projet postdoctoral vise à améliorer le traitement des collisions élastiques dans les simulations PIC en s'inspirant des théories développées pour les métaux liquides et les plasmas denses, c'est-à-dire en prenant en compte la dégénérescence électronique, l'écrantage électronique et l'ordonnancement atomique. Ce modèle sera incorporé au code PIC CALDER développé au CEA. Une fois validé, ce modèle sera exploité dans des simulations PIC de plasmas denses exposés à des faisceaux électroniques ou laser ultrabrefs et ultraintenses.
Réduction de dimension et méta-modélisation dans le domaine de la dispersion atmosphérique
La modélisation et la simulation de la dispersion atmosphérique sont indispensables pour s’assurer de l’inocuité des rejets émis dans l’air par le fonctionnement autorisé des installations industrielles et pour estimer les conséquences sanitaires d’accidents qui pourraient affecter ces installations. Depuis une vingtaine d’années, les modèles physiques de la dispersion ont connu des améliorations très notables afin de prendre en compte les détails de la topographie et de l’occupation des sols qui font la complexité des environnements industriels réels. Bien que les modèles 3D aient vu leur utilisation s’accroître, ils présentent des temps de calcul très conséquents, ce qui obère leur emploi dans les études multi-paramétriques et l’évaluation des incertitudes qui nécessitent de très nombreux calculs. Il serait dons souhaitable d’obtenir les résultats très précis des modèles actuels ou des résultats approchants dans des délais bien plus brefs. Récemment, nous avons développé une stratégie consistant à réduire la dimension de cartes de répartition d’un polluant atmosphérique obtenues au moyen d’un modèle physique 3D de référence pour différentes conditions météorologiques, puis à faire apprendre ces cartes par un modèle d’intelligence artificielle (IA) qui est ensuite utilisé pour prévoir des cartes dans d’autres situations de météorologie. Le projet post-doctoral s’attachera à compléter les travaux de recherche entamés en évaluant les performances de méthodes de réduction de dimension et de substitution de modèle déjà explorées et en étudiant d’autres méthodes. Les applications concerneront, en particulier, la simulation des concentrations autour d’un site de production industrielle qui émet des rejets gazeux à l’atmosphère. Les développements viseront à obtenir un outil opérationnel de méta-modélisation.
Elaboration et caractérisation d'un composite oxyde/oxyde
Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un CMC oxyde/oxyde à matrice faible possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Cette étude se fera en collaboration avec plusieurs laboratoires du CEA Le Ripault
Influence de la largeur de bande et de la longueur d'onde du laser sur les instabilités paramétriques
Dans le cadre du projet Taranis initié par Thales et supporté par BPI France et en collaboration avec de nombreux partenaires scientifiques tels que le CEA/DAM, le CELIA et le LULI, un travail de dimensionnement d'une cible et d'un laser destiné à la production d'énergie en attaque directe va avoir lieu. Un prérequis à ce travail, est de comprendre les mécanismes d'interaction laser-plasma qui vont se produire lors du couplage du laser avec la cible. Ces mécanismes délétères pour la réussite des expériences de fusion peuvent être régulés par l'utilisation de laser dits « large-bande ». En outre, le choix de la longueur d'onde laser utilisée pour le dimensionnement de la cible et de l'architecture laser doit être défini. L’objectif du stage est d'étudier la croissance et l'évolution de ces instabilités (Brillouin, Raman) en présence de lasers « large bande » à la fois d'un point de vue expérimental que simulation, et ainsi de pouvoir définir les conditions lasers permettant de réduire ces instabilités paramétriques.
Séparation cryogénique d'un mélange de gaz
L'exploitation d'une installation nucléaire au sein du CEA Valduc nécessite de mettre en oeuvre un procédé cryogénique pour séparer des espèces présentes dans un mélange gazeux. Le point notable est que le procédé doit permettre de séparer des espèces en très faible concentration, et sous différentes formes chimiques. Le procédé fait actuellement l'objet d'étude, et un prototype a été développé par le CEA sur le site de Grenoble. Le sujet de post-doctorat proposé consiste à participer à des essais sur le pilote et aux moyens d'analyses associées, puis de traiter les résultats obtenus. Le candidat s'insérera dans une équipe pluridisciplinaire, sur un sujet mêlant à la fois du génie des procédés, de la thermique / cryogénie et de l'analyse chimique d'éléments à l'état de trace. Les résultats obtenus sur les analyses de gaz à l'état de trace pourront être valorisés par des communications scientifiques.
L'objectif du post-doctorat sera de réaliser des essais de séparation sur le pilote. A ce titre, il sera amené à se rendre régulièrement sur le site du CEA Grenoble (lieu où se trouve le pilote) pour réaliser des campagnes d'essais. Le candidat travaillera également sur une thématique analyse, avec la mesure de composés à l'état de trace dans une matrice gazeuse. Une analyse des résultats sera ensuite réalisée, et suivie de la rédaction de documents scientifiques tels que des rapports et des communications scientifiques. L'ensemble des résultats devra permettre de définir de manière plus précise la faisabilité de la séparation envisagée et l'exploitation de ce procédé dans un environnement nucléaire.
Dans le cadre de ses missions, il est attendu du post-doctorant les qualités suivantes : capacité d'adaptation, travail en équipe, rigueur et capacité à rendre compte.