Séparation cryogénique d'un mélange de gaz
L'exploitation d'une installation nucléaire au sein du CEA Valduc nécessite de mettre en oeuvre un procédé cryogénique pour séparer des espèces présentes dans un mélange gazeux. Le point notable est que le procédé doit permettre de séparer des espèces en très faible concentration, et sous différentes formes chimiques. Le procédé fait actuellement l'objet d'étude, et un prototype a été développé par le CEA sur le site de Grenoble. Le sujet de post-doctorat proposé consiste à participer à des essais sur le pilote et aux moyens d'analyses associées, puis de traiter les résultats obtenus. Le candidat s'insérera dans une équipe pluridisciplinaire, sur un sujet mêlant à la fois du génie des procédés, de la thermique / cryogénie et de l'analyse chimique d'éléments à l'état de trace. Les résultats obtenus sur les analyses de gaz à l'état de trace pourront être valorisés par des communications scientifiques.
L'objectif du post-doctorat sera de réaliser des essais de séparation sur le pilote. A ce titre, il sera amené à se rendre régulièrement sur le site du CEA Grenoble (lieu où se trouve le pilote) pour réaliser des campagnes d'essais. Le candidat travaillera également sur une thématique analyse, avec la mesure de composés à l'état de trace dans une matrice gazeuse. Une analyse des résultats sera ensuite réalisée, et suivie de la rédaction de documents scientifiques tels que des rapports et des communications scientifiques. L'ensemble des résultats devra permettre de définir de manière plus précise la faisabilité de la séparation envisagée et l'exploitation de ce procédé dans un environnement nucléaire.
Dans le cadre de ses missions, il est attendu du post-doctorant les qualités suivantes : capacité d'adaptation, travail en équipe, rigueur et capacité à rendre compte.
Caractérisation d'écoulements réactionnels sur hydrures de palladium
Le stockage et la mise en œuvre des isotopes de l'hydrogène est une brique technologique cruciale au développement de la fusion thermonucléaires contrôlée. A ce titre, le palladium, matériau de référence pour le stockage d'hydrogène, permet d'étudier en amont les phénomènes physico-chimiques avant leur application industrielle. Le CEA dispose d'atouts majeurs concernant les technologies hydrogène (piles à combustible, stockage, électrolyse) et est acteur de référence de la recherche employant les isotopes de l'hydrogène (deutérium et tritium) pour des applications de fusion.
Le post-doctorat vise à étudier la dynamique d'écoulements réactionnels au sein d'une colonne contenant de la poudre de palladium et soumis à un flux gazeux d'hydrogène ou de deutérium. Cet écoulement réactionnel fait intervenir la cinétique des réactions solide/gaz, de la mécanique des fluides au sein d'un milieu granulaire, des phénomènes thermiques transitoires et nécessite une parfaite maitrise des conditions expérimentales et des instrumentations associées. Le laboratoire dispose de plusieurs bancs d'étude permettant de faire varier les paramètres d'intérêt (débits, pressions, températures, isotopie, granulométrie de la poudre, porosité du lit de palladium...) tout en étant couplé à des moyens d'analyse en ligne (sonde Raman) ou hors ligne (Mass Spectrometry, MS). Le couplage du banc d'étude avec un nouveau moyen d'analyse en ligne à haute résolution temporelle (HRMS) est un des objectifs majeurs de cette étude.
détection d’événements répétitifs et application à la crise sismique turque de février 2023
La technique de corrélation, ou template matching, appliquée à la détection et l’analyse des événements sismiques a démontré sa performance et son utilité dans la chaîne de traitements du Centre National de Données du CEA/DAM. Malheureusement, cette méthode souffre en contrepartie de limitations qui bride son efficacité et son utilisation dans l’environnement opérationnel, liées d’une part au coût calcul d’un traitement massif des données, et d’autre part au taux de fausses détections que pourrait engendrer un traitement bas niveau. L’utilisation de méthodes de dé-bruitage en amont du traitement (exemple : deepDenoiser, par Zhu et al., 2020), pourrait de surcroît accroître le nombre de détections erronées. La première partie du projet de recherche consiste à fournir une méthodologie visant à améliorer les performances en temps de traitement du détecteur de multiplets, en faisant notamment appel aux techniques d’indexation de l’information élaborées en collaboration avec le LIPADE (méthode L-MESSI, Botao Peng, Panagiota Fatourou, Themis Palpanas. Fast Data Series Indexing for In-Memory Data. International Journal on Very Large Data Bases (VLDBJ) 2021). La seconde partie du projet porte sur le développement d’un outil de « filtrage » des fausses détections de type auto-encodeur construit par apprentissage statistique. La crise sismique Syrie-Turquie de février 2023, dominée par deux séismes de magnitude supérieure à 7,0, servira de base de données d’apprentissage pour cette étude.
Evolution des codes ISAAC et Xpn pour une extension de la méthode QRPA au traitement complet des noyaux impairs ; vers une base de données sans interpolation pour les noyaux impairs
Le traitement explicite des noyaux à isospin impair dans les approches microscopiques se limite pour l’instant à l’approximation dite du « blocking ». Dans l’approche Hartree-Fock Bogolyubov (HFB), l’état fondamental d’un noyau de masse impaire est décrit comme une excitation à une quasi-particule (qp) sur son vide de référence. Ainsi, dans l’approche QRPA, où les excitations de base sont des états «?à 2 quasi-particules?», la qp bloquée est exclue de l’espace de valence en vertu du principe d’exclusion de Pauli?; principe applicable aux quasi-particules qui sont des fermions. En conséquence, la qp choisie est spectatrice et ne participe pas aux états collectifs QRPA. Certains niveaux où le nucléon célibataire devrait avoir une contribution significative seront alors soit mal, soit pas du tout, reproduits. La mise au point dans les codes QRPA (ISAAC et Xpn) d’une procédure qui permette à tous les nucléons de participer aux états collectifs est donc d’importance capitale pour une description microscopique des noyaux impairs, préférable à une simple interpolation entre noyaux pairs. De plus, des développements récents de Xpn ont permis la description des décroissances ß- premières interdites, ce qui améliore l’estimation de temps de demi-vie des fragments de fission. Ceci pourrait être étendu afin de traiter également les décroissances ß+ et les captures électroniques. Couplée avec un meilleur traitement des noyaux impairs, cette approche pourrait être adaptée aux calculs à grandes échelles, utiles également pour l’astrophysique nucléaire.
Analyse de la stabilité des pentes de l’atoll de Mururoa par approche probabiliste et construction d’une base de données pondérée de modélisations de tsunamis d’origine gravitaire sur la région niçoise
L’objet principal du post-doctorat est de réaliser une analyse de stabilité des pentes 2D et 3D sur la zone Nord-Est de Mururoa, incluant un aspect probabiliste (code SAMU_3D ; Leynaud & Sultan, 2010) afin de considérer l’effet de la variabilité des paramètres sédimentaires et incertitudes associées (résistance au cisaillement non drainé et poids unitaire) sur la possibilité effective d’un glissement. Différentes loupes de glissement potentielles avec un facteur de sécurité seront définies (géométrie, volume), qui viendront alimenter la simulation tsunami. Un second volet concerne l’évaluation de l’impact potentiel en termes d’inondation de tsunamis d’origine gravitaire sur la région très instrumentée au large de Nice, à partir de modélisations. Cette deuxième thématique, qui sera réalisée sur un temps plus court, offrira au post-doctorant une possibilité de valoriser ses travaux à l’international.
Simulation de l’interaction d'un flux de photons X impulsionnel haute énergie avec un scintillateur
Dans le cadre d’expériences d’hydrodynamique, le CEA-DAM utilise des installations de radiographie impulsionnelles qui génèrent, en quelques dizaines de nanosecondes, une dose très importante de photons X énergétiques, jusqu'à 20 MeV. Après avoir traversé l'objet étudié, les photons X interagissent avec un détecteur, composé d’un cristal scintillateur convertissant les photons X en photons visibles, qui sont ensuite détectés par une caméra CCD. L'objectif de ce post-doctorat est de mettre en place une chaîne de simulation complète du détecteur, comprenant l’émission des photons visibles par le scintillateur et leur transport par la chaine optique jusqu’à la caméra CCD. Dans un premier temps, le (la) candidat(e) devra modéliser les différents mécanismes mis en œuvre dans la chaîne de détection et identifier les outils de simulation les plus pertinents pour les reproduire. Dans un deuxième temps, il (elle) sera amené(e) à comparer les résultats de simulation à des campagnes de caractérisation expérimentales, réalisées à l’aide d’une source X impulsionnelle. Enfin, le (la) candidat(e) pourra proposer, à l'aide de la chaîne de simulation retenue, des évolutions possibles pour les futures chaînes de détection. Ce travail pourra faire l'objet de publications.
Conception d’une chaîne de vélocimétrie hétérodyne dans l'infrarouge moyen pour les hautes vitesses
Ce post-doctorat vise à concevoir au moyen de briques technologiques innovantes un diagnostic de vélocimétrie hétérodyne fonctionnant dans l'infrarouge moyen (entre 3 µm et 5 µm) pour sonder des nuages de particules denses et se déplaçant à des vitesses élevées (jusqu'à 5000 m/s), en physique des chocs. Schématiquement, on fait interférer sur un photodétecteur relié à un numériseur deux ondes laser légèrement décalées en fréquence, l’une sert de référence et l’autre porte l’information de vitesse de l’objet visé, par effet Doppler. Le développement de nouveaux composants optiques et de technologies de pointe dans cette gamme de longueurs d'onde est actuellement en plein essor, pour des applications dans la Défense, la détection de gaz, etc... Dans une première phase de conception, le (la) candidat(e) devra donc identifier et choisir les composants photoniques les plus pertinents pour notre besoin. Il (elle) devra pour cela optimiser les performances globales de la chaîne de mesure, en s'appuyant sur des outils de simulation du commerce ou développés au CEA-DAM. Dans un deuxième temps, il (elle ) constituera la chaîne de mesure avec les éléments optiques retenus. Il (elle) pourra également être amené(e) à participer au dimensionnement et à la fabrication d'éléments mécaniques de précision pour assurer l'interface entre les éléments. Suivant l'état d'avancement, le système ainsi conçu pourra être déployé sur des expériences dédiées. Ce travail pourra faire l'objet de publications.
Cascade de circulicité en turbulence compressible
Dans le cadre de ce post-doctorat, nous proposons d'étudier les propriétés des petites échelles d'une turbulence homogène compressible forcée, et cela au travers de relations statistiques exactes de type Monin-Yaglom. L'idée, détaillée dans la référence [1], est de comprendre comment s'organise le transfert de circulicité dans la zone inertielle. La circulicité est une grandeur associée au moment angulaire et, par extension, aux mouvements tourbillonnaires. L'analyse de ses propriétés inertielles permet de compléter la description de la cascade d'énergie déjà mise en évidence dans de précédents travaux [2,3].
L'objectif du post-doctorat sera de réaliser et d'exploiter des simulations directes de turbulence compressible homogène avec forçage, de façon à mettre en évidence les propriétés inertielles de la circulicité.
Pour cela, le(la) post-doctorant(e) disposera d'un accès au très grand centre de calcul (TGCC) ainsi que d'un code, Triclade, résolvant les équations de Navier-Stokes compressibles [4]. Ce code ne possède pas de mécanisme de forçage et la première tâche du(de la) post-doctorant(e) consistera donc à ajouter cette fonctionnalité. Une fois cette tâche accomplie, des simulations seront réalisées en faisant varier la nature du forçage et notamment le rapport entre ses composantes solénoïdales et dilatationnelles. Ces simulations seront ensuite exploitées en analysant les termes de transfert de la circulicité.
[1] Soulard and Briard. Submitted to Phys. Rev. Fluids. Preprint at arXviv:2207.03761v1
[2] Aluie. Phys. Rev. Lett. 106(17):174502, 2011.
[3] Eyink and Drivas.Phys. Rev. X 8(1):011022, 2018.
[4] Thornber et al. Phys. Fluids 29:105107, 2017.
Intégration d’un pouvoir d'arrêt électronique ab initio dans les simulations de dynamique moléculaire des cascades de déplacement dans les semiconducteurs
En environnement radiatif, les effets de déplacements atomiques peuvent entrainer la dégradation des performances des composants électroniques et optoélectroniques. Dans les semiconducteurs constituant ces composants, ils créent des défauts à l’échelle atomique, qui modifient le nombre de porteurs libres et donc altérent les performances du composant.
Afin de mieux comprendre les phénomènes physiques à l’origine de ces dégradations, les effets de déplacement sont bien reproduits par simulation à l’aide de méthode de dynamique moléculaire classique. Néanmoins, une compréhension plus fine de l’influence de la structure électronique du matériau sur le nombre de défauts créés lors de la cascade de déplacement est nécessaire pour avoir des simulations précises. Pour cela, un modèle nommé électron-phonon EPH a été développé. L’objectif de ce post-doctorat sera de nourrir ce modèle avec des calculs ab initio puis de le paramétrer afin d’effectuer des simulations de dynamique moléculaire pour plusieurs semiconducteurs utilisés dans les technologies microélectroniques actuelles. Les résultats obtenus serviront à mieux comprendre et améliorer si besoin le modèle EPH.
Soudage laser de matériaux hautement réfléchissants à l'échelle sub-millimétrique
Dans le cadre du programme "Simulation", le CEA réalise des expériences sur lasers de puissance mettant en œuvre des objets à forte valeur ajoutée. Ces objets, les microcibles, sont des assemblages complexes d'éléments variés, dont la fabrication requiert des procédés sophistiqués, à la limite de la rupture technologique. Parmi ces technologies, le CEA souhaite développer ses capacités de soudage par laser, à l'échelle sub-millimétrique. Un défi majeur réside dans le soudage de matériaux hautement réfléchissants (aluminium, cuivre, or,...), pour accéder à de nouvelles fonctionnalités (jonction métallurgique, étanchéité,....).
L'objectif de ce post-doctorat est de développer des solutions technologiques pour la réalisation d'assemblages soudés, et de comprendre l'interaction laser/matière associée. L'intérêt, mais aussi la difficulté, de l'étude réside dans les différents critères que doivent respecter les procédés : 1) être compatibles de matériaux hautement réfléchissants et de très faibles épaisseurs (< 0,2 mm) , 2) induire des effets collatéraux (thermiques notamment) extrêmement localisés, 3) fonctionnaliser le joint soudé (étanchéité par exemple).
Le postdoctorant(e) exploitera la dernière génération de source laser émettant dans des longueurs d'onde visibles (vert, bleu). Il/elle participera à la conception et aux tests de qualification de la station laser associée à cette nouvelle source. Après validation, il/elle réalisera l'étude de la soudabilité opératoire et métallurgique des sous-éléments. Il/elle comparera ses résultats avec l'utilisation d'un laser infrarouge impulsionnel. Il/elle expertisera les joints obtenus à l'aide de différentes approches et optimisera la conception des joints soudés. Son étude expérimentale ira jusqu'à la réalisation de tests fonctionnels sur prototypes. Des collaborations externes seront mises en place afin de confronter les résultats obtenus à des simulations afin d'en déduire un modèle phénoménologique.