Développement d'analyses en ligne pour les actinides en solution

La quantification des actinides présents dans les solutions issues des procédés mis en oeuvre sur le site de Valduc est un enjeu fort pour le CEA qui propose de développer une stratégie d’analyse en ligne.
L'approche chimiométrique basée sur des mesures en spectrophotométrie UV-Visible-NIR a démontré son efficacité pour l’analyse de solutions contenant du plutonium en milieu acide nitrique. Ces études ont été menées dans le cadre d'un précédent contrat post-doctoral.
La présente offre propose de poursuivre le développement de cette approche chimiométrique, de façon à étendre la compatibilité du modèle à d’autres configurations analytiques (concentrations et spéciations des actinides différentes) et à en optimiser les paramètres. En complément, des essais par spectrométrie gamma seront conduits pour pallier les limitations de la spectrophotométrie. Le(la) post-doctorant(e) aura également en charge l’implantation des moyens d’analyse développés sur une ligne de procédé ainsi que l’évaluation des performances dans cette configuration.

Accélération par GPU d'un code de dynamique des gaz préexistant.

Le code Triclade, développé au CEA-DAM, est un code DNS tridimensionnel écrit en C++ MPI résolvant les équations de Navier-Stockes compressibles pour un mélange binaire de gaz parfaits sur des maillages cartésiens. Il est utilisé, en particulier, pour simuler le mélange turbulent se produisant aux interfaces entre fluides sous l'effet d'instabilités hydrodynamiques.

Le(a) candidat(e) aura pour tâche l'amélioration des performances de l'application en mettant en place un nouveau degré de parallélisme basé sur une programmation sur carte graphique (GPU). Le code ainsi produit devra réduire au mieux la divergence entre les approches CPU et GPU, en permettant notamment d'unifier les appels aux fonctions calculatoires de manière à masquer l'utilisation explicite des accélérateurs. Pour ce faire, il (elle) pourra se baser sur une API existante (telle que Kokkos), ou, suivant les besoins, des directives de précompilations (telles que OpenMP). Le(a) candidat(e) sera amené(e) à collaborer fortement avec plusieurs autres équipes travaillant autour de l'accélération GPU.
Une bonne connaissance de la programmation C/C++, des systèmes distribués (calculateurs) ainsi que de la programmation sur carte graphique seront nécessaires à la concrétisation de ces objectifs. Des connaissances en mécanique des fluides seraient appréciées.

Etudes numériques de l’interaction laser plasma en champ intermédiaire sur le Laser Megajoule

Dans les expériences de Fusion par Confinement Inertiel (FCI), des faisceaux lasers intenses traversent une cavité remplie de gaz qui est rapidement ionisé. Ils se propagent dans le plasma ainsi formé et sont soumis à des instabilités néfastes pour réaliser la fusion. Les techniques de lissage optique consistent à briser les cohérences spatiales et temporelles des faisceaux lasers afin que leurs tailles et temps caractéristiques soient plus petits que ceux requis pour le développement des instabilités. La brisure de la cohérence spatiale est réalisée par une lame de phase qui va répartir l’énergie laser en une multitude de grains de lumière appelés points chauds. La brisure de cohérence temporelle s’effectue en élargissant le spectre grâce à un modulateur de phase et en dispersant chaque fréquence grâce à un réseau. La connaissance des caractéristiques des points chauds (largeur, longueur, contraste, temps de cohérence, vitesses …) est importante pour prédire le niveau des instabilités qui peut évoluer en fonction du temps et au cours de la propagation des faisceaux.
Par souci de simplicité, les instabilités se développant lors de l’interaction laser-plasma sont souvent étudiées autour du point de focalisation des faisceaux lasers. Or dans les expériences de FCI, les faisceaux sont focalisés près du trou d’entrée laser de la cavité qui a une longueur d’environ 1 cm. Des instabilités peuvent donc se produire à la fois en amont du meilleur foyer (à l'extérieur de la cavité) et aussi et surtout en aval de celui-ci (assez loin à l’intérieur de la cavité). Le but de ce contrat post-doctoral est d’étudier le développement des instabilités lorsqu’il se produit en champ intermédiaire (loin du meilleur foyer du faisceau laser). Nous nous concentrerons sur les instabilités de propagation (autofocalisation, diffuson Brillouin vers l’avant) et sur la rétrodiffusion Brillouin. Le travail sera réalisé grâce à des outils de diagnostics et des codes numériques existants.

Construction d'un modèle numérique à l'échelle mésoscopique de pièces composites macroscopiques

La modélisation des matériaux composites à renfort fibreux à fibres continues (préforme) peut être réalisée à l’échelle mésoscopique par éléments finis en maillant la préforme tissée ainsi que la matrice. La géométrie de ces constituants peut être générée à partir d’une géométrie idéale ou issue d’imagerie par tomographie X (jumeau numérique). Une limite reste cependant le volume de matériau pouvant être représenté. Si le calcul classique par éléments finis est envisageable pour le matériau moyen, au point courant, les singularités géométriques (renfort, liaison, etc.) sont difficiles à prendre en compte (nombre de mailles important). Il est alors nécessaire de recourir à un calcul multi-échelle méso-macro. De récents développements en calcul par éléments finis montrent que la résolution du problème posé par le calcul sur modèle numérique d’une structure macroscopique décrite à l’échelle méso est possible en découpant ce calcul macros en une série de calculs mésos ("décomposition en sous-domaines"). Il faut alors disposer d’une description numérique macroscopique du composite, y compris dans les zones de singularités. L’objectif du stage post-doctoral proposé est de construire un outil logiciel permettant de reproduire une architecture composite (renfort à fibres continues) d’une pièce de forme donnée. Une attention particulière sera portée aux géométries de renfort possibles (tissés, rapportés, ...). Le choix des outils utilisés (mailleur, langage, …) sera étudié au début du stage.

Simulation d'un milieu poreux soumis à des impacts à haute vitesse

La maîtrise de la réponse dynamique de matériaux complexes (mousse, céramique, métal, composite) suite à des sollicitations intenses (dépôt d’énergie, impact hyper-véloce) est un enjeu majeur pour de nombreuses applications développées et conduites par la Direction des Applications Militaires (DAM) du Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA). Dans cette optique, le CEA CESTA développe des modélisations mathématiques du comportement de matériaux face à des impacts hypervéloces. Ainsi, dans le cadre de l’ANR ASTRID SNIP (Simulation Numérique des Impacts dans les milieux poreux) en collaboration avec l’IUSTI (Université Aix-Marseille), des études sur le thème de la modélisation des matériaux poreux sont menées. Elles ont pour objectif d’aboutir à l’élaboration de modèles innovants plus robustes et palliant les déficits théoriques des méthodes existantes (consistance thermodynamique, préservation du principe d’entropie) Dans le cadre de ce post-doc, le candidat devra effectuer, dans un premier temps, une revue bibliographique pour comprendre les méthodes et modèles développés au sein de l’IUSTI et du CEA CESTA et comprendre leurs différences. Dans un second temps, il étudiera la compatibilité entre le modèle développé à l’IUSTI et les méthodes de résolution numériques utilisées dans le code de calcul de dynamique rapide du CEA CESTA. Il proposera des adaptations et des améliorations de ce modèle pour prendre en compte l’ensemble des phénomènes physiques que l’on souhaite capturer (plasticité, contraintes de cisaillement, présence d’inclusions fluides, endommagement) et rendre son intégration dans le code de calcul possible. Après une phase de développement, la validation de l’ensemble de ces travaux sera effectuée via des comparaisons avec les modèles physico-numériques existants ainsi que la confrontation avec les résultats expérimentaux d’impacts issus de la littérature et/ou effectués au CEA/DAM.

Minimisation de l’empreinte laser par “machine learning” dans le contexte de la fusion par confinement inertiel

Le postdoc sera basé au laboratoire CELIA qui développe des études sur différents schémas de fusion inertielle par laser. Afin d’optimiser l’implosion de la cible, l’impulsion laser est mise en forme spatialement et temporellement, notamment par une pré-impulsion d’une centaine de picosecondes et d’intensité de quelques centaines de TW/cm2. Cependant cette dernière introduit des inhomogénéités spatiales à la surface et en volume de la cible, amplifiées par le comportement solide initial de la matière. Ces empreintes générées par la pré-impulsion vont dégrader la symétrie de la cible lors de son implosion, et donc diminuer l’efficacité du confinement inertiel. A l’heure actuelle, la plupart des modèles supposent un état plasma dès le début de l’interaction, et sont ainsi incapables de rendre compte de certaines observations expérimentales. Pour palier ce manque, nous venons de développer un outil original de simulation multi-physique qui inclut la transition de phase d’un matériau homogène induite par le laser. Afin d’atténuer l’effet d’empreinte laser, une mousse de polystyrène (matériau hétérogène) peut être déposée à la surface de la cible. Les réflexions optiques multiples dans la mousse lissent le profil spatial d’intensité laser, permettant ainsi de réduire les inhomogénéités d’absorption. Afin de réduire l’influence de l’empreinte laser, le post-doctorat aura vocation à développer un modèle microscopique décrivant l’évolution de la réponse optique d’une mousse lors de la transition solide-plasma. La première étape du travail consistera à coupler l’équation d’Helmholtz (décrivant la propagation laser) à un modèle de transition solide-
plasma, et d'étudier l'influence des paramètres. La seconde étape consistera à utiliser un algorithme d’intelligence artificielle (réseau de neurone) afin d’optimiser la réponse optique de la mousse.

Développement d’une méthode automatisée de transfert et d’analyse du xénon

le CEA/DAM s’intéresse à la mesure de certains gaz rares comme les isotopes radioactifs du xénon qui sont émis vers l’atmosphère lors de divers événements nucléaires. Il a développé ainsi des systèmes de prélèvement et traitement d’échantillons concentrés en gaz rares dans le cadre du système de surveillance international du Traité d’Interdiction Complète des Essais nucléaires (TICE). C’est dans ce cadre que le CEA/DAM a développé depuis le début des années 2010 une méthode basée sur la cryo-condensation permettant d’une part de transférer le contenu d’une archive vers une cellule de mesure de spectrométrie gamma avec un fort rendement (supérieur à 50 %) et d’autre part d’analyser la teneur en Xe stable afin de déterminer l’activité volumique de l’échantillon. La principale faiblesse de la méthode actuelle est le fait que celle-ci soit peu automatisée et requiert la présence d’un opérateur pour une part significative des opérations (contrôles qualité, tests d’étanchéité, transfert de l’échantillon, …). l’objectif principal de cette étude est donc de contribuer à développer et valider une nouvelle méthode de transfert et d’analyse du Xe qui puisse être automatisée.

Traitement SLAM pour la navigation aidée par le terrain (Simultaneous Localization and Mapping)

Le post-doctorat se situe dans le contexte d’essais en vol d’un véhicule instrumenté (navette spatiale, capsule ou sonde) qui rentre dans l'atmosphère. Il s’agit de reconstruire, à partir de mesures (centrale inertielle, radar, ballon météorologique, etc.), la trajectoire et diverses quantités d'intérêt, afin de mieux comprendre les phénomènes physiques et de valider les modèles prédictifs. On s’est orienté vers des statistiques bayésiennes, associées à des méthodes par chaînes de Markov Monte Carlo (MCMC). Le post-doctorant aura pour mission de développer et d’étendre l'approche proposée, dans le cadre d'une collaboration scientifique avec Audrey Giremus, professeur à l’Université de Bordeaux et spécialiste du domaine. On cherchera en particulier à accroitre les performances d’échantillonnage en grande dimension. Une attention particulière sera portée à la problématique d'apprentissage automatique constituée par l'exploitation d'une base de données aérologiques. L'objectif final sera d'aboutir à un prototype évolutif qui, dédié à l'analyse post-vol des essais en vol, exploite les différentes sources d'information et les incertitudes associées. Les évaluations porteront sur des données simulées et réelles, avec comparaison à des outils existants. On s'efforcera de valoriser le travail par des communications et publications scientifiques.

Développement d'un procédé de croissance cristalline

Dans le cadre de la réalisation de composants optiques de grandes dimensions pour le Laser MégaJoule, il est nécessaire d'étudier la croissance des cristaux de DKDP (KDP deutéré). Ils sont traditionnellement produits par croissance lente (la durée de croissance dépasse deux ans). Mais le laboratoire propose ici d'étudier une méthode rapide de croissance réduisant le délai de fabrication à quelques mois.

Sensibilité des composants nanoélectroniques innovants aux effets des radiations

L’évolution et l’intégration des composants électroniques reposent depuis longtemps sur la miniaturisation des dimensions des transistors. Leur taille atteint désormais des dimensions telles que les épaisseurs de couches minces ne contiennent plus que quelques couches atomiques. Pour poursuivre l’intégration des composants, une des voies les plus prometteuses consiste à explorer les empilements en 3D de composants. Cette démarche conduit à des technologies non planaires, et a été initiée au CEA depuis des années. Elle a permis l’apparition de composants tels que les FinFETs (Finger Field Effect Transistors), les nano-fils de silicium (Si nano-wire) et plus récemment les nano-sheets. Désormais, pour ces composants les plus avancés, les dimensions caractéristiques se rapprochent des dimensions des effets induits par les particules de l’environnement spatial.
La fiabilité en environnement radiatif des futurs composants intégrés basés sur ces technologies nécessite d’être étudiée afin d’en estimer la sensibilité. Ces technologies électroniques sont prometteuses, et identifiées comme solution possible pour l’électronique du futur. Cependant, l’utilisation de ces technologies en environnement radiatif (avionique, spatial, physique des hautes énergies, etc…) nécessite une meilleure compréhension des effets induits par les différents types de radiations dans ces empilements complexes de matériaux en couche mince. L’expertise de conception et de développement des composants nanoélectroniques sera amenée par le CEA LETI. Le CEA DIF, dont une équipe est spécialisée dans l’évaluation des technologies micro, nano et subnanomètriques soumises aux radiations, apportera son savoir-faire afin d’appréhender au mieux la conjonction des deux domaines considérés.

Top