Conditionnement de déchets issus d’un réacteur à sel fondu NaCl-MgCl2
Depuis plusieurs années, l’intérêt pour les réacteurs nucléaires à sel fondu s’est vu relancé en France comme à l’international. L’utilisation de sels chlorés est aujourd'hui considérée. Indépendamment des verrous technologiques liés à leur développement, la crédibilité de cette filière repose sur une gestion maitrisée des déchets ultimes produits au cours de l’exploitation de tels réacteurs. Cette gestion passe par une étape de conditionnement, qui nécessite d’être développée en adéquation avec la nature des déchets considérés.
Le conditionnement de deux types de déchets, résultant du traitement du combustible usé d’un réacteur à sel fondu NaCl-MgCl2 selon différents scénarios, constitue l’objet de ce post doctorat, qui sera de fait structuré en deux axes distincts.
Le premier axe du post doctorat est dédié à l’étude du conditionnement par vitrification en matrice aluminoborosilicatée de solutions de compositions complexes et enrichies en magnésium par rapport aux flux habituellement vitrifiés. Afin de valider la faisabilité d’une telle vitrification, il est indispensable d’évaluer la microstructure, la structure et la durabilité chimique des verres résultants, au regard des teneurs en magnésium attendues. Pour ce faire, une série de verres aluminoborosilicatés à teneur variable en magnésium sera élaborée, puis caractérisée. L’altération en solution aqueuse de ces verres sera ensuite étudiée, en portant une attention particulière sur la corrélation entre la structure du verre et son altération.
Le second axe du post-doctorat est focalisé sur le conditionnement des déchets chlorés, en particulier les chlorures d’alcalins et alcalino-terreux. Dans ce cas, la voie de conditionnement privilégiée a priori est la céramisation et fera l‘objet d’une étude bibliographique. La (les) voies retenue(s) sera testée, caractérisée et les performances de confinement déterminées.
Compétences recherchées : science des matériaux, verres, céramiques, goût pour l’expérimentation.
Mise au point, validation métrologique et essais en milieu extérieur d'une unité de mesure Raman/FO multitrack dédiée à la sécurité de futures stations cryogéniques de distribution d’hydrogène liquide
Contexte : Les usages domestique et industriel de l’hydrogène liquide comme carburant du futur nécessitent de définir un code de sécurité adapté. Actuellement, les critères de séparation des réservoirs ont été définis par anticipation selon une approche conservatoire. Il est donc nécessaire de réaliser des expériences en vraie grandeur (épandages) afin d’alimenter des codes de calculs et bâtir une normalisation pertinente. Ces expériences requièrent la mise en œuvre d’une instrumentation adaptée à la mesure de tous les gaz présents en espace libre (O2, N2, H2O, H2) afin d’établir un relevé de pressions partielles au cours de chaque essai, corrélé aux autres moyens de mesure mis en place (thermométrie, catharométrie, PIV, BOS,…).
Mission : Dans le contexte d’un projet ANR-PEPR (ESKHYMO) géré par le CEA Liten, une unité de mesure spectrométrique Raman/FO Multitrack sera mise au point conjointement par le CEA List et le CEA DES sur la base d’un dispositif existant. La mesure Raman est multi-élémentaire, multi-track (une seule unité de mesure pour plusieurs sondes), non-déflagrante, et délivre une mesure autonormalisée à une espèce de référence (le plus souvent l’azote à la pression atmosphérique). L’unité de mesure Raman/FO comportera un laser, un spectromètre associé à une caméra CCD scientifique et un circuit de fibres optiques permettant le déport de la mesure. La conception des sondes Raman/FO sera également basée sur une réalisation existante au CEA que l’on cherchera à miniaturiser en vue d’un déploiement en conditions de terrain. Quatre sondes Raman/FO seront réalisées puis ensuite étalonnées en air (enceinte climatique) et en hydrogène (tube à choc ou chambre à vide) au CEA DES DM2S à Saclay. Finalement, le dispositif final sera déployé sur site d’essai pour procéder à des mesures multigaz lors des expériences d’épandage, en partenariat avec l’industriel Air Liquide et les organismes accréditeurs (INERIS).
Compétences : Optique, laser, fibres optiques
Micro-usinage de thermoplastiques pour la fabrication de microsystèmes analytiques
Les techniques de micro-fabrication et notamment le micro-usinage permettent le prototypage rapide (quelques jours) de microsystèmes, au plus proche de l’application. Le polyméthacrylate de méthyle (PMMA - Nom commercial Plexiglas) est un matériau communément utilisé pour la fabrication de microsystèmes mais dont la résistance chimique aux acides et aux solvants est limitée.
L’objectif de ce post-doctorat est d’étudier la possibilité de l’usinage de matériaux alternatifs au PMMA et d’optimiser les paramètres de fabrication associés. Le post-doctorat débutera par la sélection des matériaux en fonction des applications visées (propriétés optiques, physiques et chimiques). Les matériaux seront choisis parmi la famille des thermoplastiques (PC, POM, PS, PEHD, PEEK, PVC, PP, PTFE, ULTEM, etc).
L’optimisation de l’étape de micro-usinage sera réalisée en faisant varier de nombreux paramètres comme la vitesse de rotation de l’outil, les vitesses d’avances, la profondeur de passe, etc. Les surfaces et canaux obtenus seront caractérisés par profilométrie optique ou mécanique, microscopie optique et/ou microscopie électronique à balayage.
Etude thermodynamique du système Nb-O-Zr pour le recyclage d'assemblages nucléaires
Lors du recyclage des combustibles nucléaires, les assemblages irradiés sont cisaillés en tronçons appelés coques. La matière nucléaire contenue dans les tronçons est dissoute en milieu acide et les éléments de structures et de gainage sont rincés puis compactés et conditionnés en colis CSD-C (Conteneur Standard de Déchets Compactés) relevant actuellement d’un stockage MA-VL dans CIGEO.
Le projet REGAIN (REcyclage des GAInes Nucléaires) est un projet soutenu dans le cadre du volet nucléaire de France Relance, dans la catégorie des « Solutions innovantes pour la gestion des matières et déchets radioactifs et la recherche d’alternatives au stockage géologique profond » . Il propose l’étude d’une solution alternative à la filière découlant du compactage des coques, dans le but d’optimiser la gestion des matériaux d’assemblage et de gainage irradiés. Cette solution repose sur une approche innovante et en rupture consistant à réduire le terme source radiologique des coques grâce à une succession d’opérations de décontamination dans l’objectif de limiter le volume de déchets ultimes : Une première étape de décontamination en actinides (An) et produits de fissions (PF) et une seconde étape de séparation du zirconium des produits d’activation de structure (PAS).
Afin d’alimenter les études sur le procédé industriel, une partie du projet REGAIN est dédié à la collecte et à l’établissement des données de base structurant les études du projet, à la fois sur des dimensions scientifiques, techniques et économiques.
Dans ce cadre, le CEA propose un post-doc avec l’objectif de développer une base de données thermodynamiques pour le système ternaire Nb-O-Zr à partir des données de la littérature et des données expérimentales collectées au sein du projet. Il sera possible au cours du projet de considérer la contribution d’une sélection de produits de fission. Le candidat pourra être amené à réaliser des expérimentations supplémentaires afin de compléter le jeu de données
Développement d’un outil de simulation du processus de piqûration d’un acier inoxydable utilisé pour l’entreposage des déchets nucléaires
Les déchets nucléaires de structure sont compactés dans des galettes, empilées dans un conteneur en acier inoxydable. Dans ces galettes de compactage sont placés différents matériaux de type métallique additionnés de matière organique, dont des déchets chlorés. Par dégradation radiolytique, ces derniers peuvent conduire à la formation de chlorure d’hydrogène HCl. Durant la phase d’entreposage, une humidité relative peut être présente au sein du conteneur, qui, additionnée au HCl, peut conduire à un phénomène de condensation, avec pour conséquence l’apparition, à la surface des matériaux, de condensats acides et concentrés en ions chlorures. Au contact de cet électrolyte acide et chloruré, un phénomène de piqûration est susceptible de s’amorcer à la surface d’un acier inoxydable. Il s’agit d’un phénomène local pouvant conduire au percement du matériau dans les cas extrêmes. L’amorçage de ce phénomène dépend de plusieurs facteurs : la morphologie de l’électrolyte, sa composition et son évolution dans le temps.
Si de nos jours ce phénomène est bien connu, le modéliser reste un défi majeur car il s’agit d’un problème multi physiques et multi paramètres couplés. De nombreuses questions restent ouvertes notamment au niveau des lois physiques et chimiques à utiliser ou comment représenter le processus de corrosion ?
L’objectif du post-doctorat est de développer un outil sous COMSOL capable de simuler l’amorçage et l’évolution dans le temps d’une piqûre à la surface d’un acier inoxydable. La démarche s’appuiera sur une modélisation mécaniste des processus (processus de transport de matière et ensemble des réactions chimiques et électrochimiques).
Le post doctorat se déroulera en plusieurs actions :
1-faire un état de l’art de la bibliographie afin de comprendre le phénomène de piqûration et d’identifier les lois nécessaires à la modélisation.
2-simuler la propagation de la piqûre pour établir un critère de propagation.
3-simuler l’amorçage du processus.
Comportement sismique d’un pont roulant
Les ponts roulants font partie des équipements d’installations industrielles pour lesquels il convient de porter une attention particulière. Ils sont en effet généralement situés en partie haute des ouvrages de génie civil et donc potentiellement soumis à des niveaux importants d’accélération en cas de séisme du fait de l’amplification induite par la structure porteuse. En conséquence, ils sont potentiellement sujets à des efforts significatifs et peuvent être la source d’efforts importants sur la structure de supportage. L’enjeu pour la sûreté est de se prémunir face au risque d’agression avec des équipements sensibles, en cas d’instabilité des éléments constitutifs du pont ou de la structure de supportage. Cette étude s’inscrit dans la continuité de deux précédentes campagnes d’essais qui ont été menées sur la table vibrante Azalée du laboratoire EMSI sur une maquette de pont roulant. Elle vise à fournir des modèles numériques validés de ponts roulants. Deux axes de recherche sont envisagés. Le premier axe consiste à compléter les campagnes d’essais « historiques » par des essais statiques sur la maquette pour justifier le recalage des modèles numériques. Le second axe consiste à exploiter, par confrontation essais/calculs, l’ensemble des essais qui ont été réalisés dans le cadre d’une campagne d’essais précédente et qui ont été réalisés à des fins d’analyse statistique.
Conception de nouveaux outils microfluidiques pour les procédés chimiques d’extraction liquide-liquide
Cette proposition de post-doc de 12 mois s’inscrit dans le cadre du PIA MiRAGe : Plan d’Investissement Avenir « Outils Microfluidiques pour une R&D Accélérée sur les procédés de recyclaGe ».
Le projet MIRAGE vise à proposer un ensemble d’outils, plateformes et méthodes micro et millifluidiques permettant d’accélérer, intensifier et de rendre plus flexibles la R&D sur les nouveaux procédés de recyclage de métaux stratégiques (nucléaires ou non nucléaires) tout en minimisant les quantités de matières mises en œuvre.
Pour ce faire de nouveaux outils microfluidiques ont été conçus au CEA ISEC pour réaliser des opérations d’extraction liquide-liquide à contre-courant. Ces outils permettent de bousculer les ordres de grandeur dans l’importance des phénomènes physico-chimique mis en œuvre.
L’intérêt de cette invention est double et sera le cœur de travail de ce post-doc :
-Effectuer des opération d’extraction sur des temps et des volumes liquides très faibles.
-Transposer cette invention à des volumes plus importants.
Ainsi, dans un premier temps ce travail de post-doc cherchera à étudier plus en détail les capacités de ce nouveau dispositif microfluidique, puis à transposer cette nouvelle technique à des contacteurs plus volumineux.
Le travail sera effectué dans les installations de l’ISEC au CEA, sur le site de Marcoule en partenariat avec le CNRS, Universités et l’INP de Toulouse.
Microsystème séparatif couplé à la spectrométrie de masse pour la purification et la caractérisation en ligne d’échantillons nucléaires
La miniaturisation d’étapes analytiques communément effectuées en laboratoire présente de nombreux avantages et en particulier dans le secteur nucléaire, pour lequel la réduction de consommation de matières et de production de déchets est d’intérêt majeur. Dans ce contexte, un des axes du laboratoire est la miniaturisation d’outils analytiques, notamment de techniques séparatives par chromatographie.
Dans ce projet, il s’agira de réduire l’échelle des étapes de purification d’échantillons nucléaires par chromatographie d’extraction sur phase solide, en amont des processus d’analyse. L’obtention de ces dispositifs d’extraction miniaturisés repose sur la synthèse et l’ancrage in situ de monolithes dans les canaux de microsystèmes en copolymère d’oléfine cyclique (COC). Ce matériau étant chimiquement inerte, des stratégies de fonctionnalisation du COC sont en cours de développement au laboratoire pour greffer de façon covalente des sites réactifs à sa surface, avant d’ancrer localement des monolithes spécifiques des actinides aux parois des micro-canaux. L'objectif est de concevoir et fabriquer des microsystèmes d’extraction chromatographique en COC, de les mettre en œuvre pour des purifications chimiques et des mesures par spectrométrie de masse, hors ligne et en ligne
Altération aqueuse du verre nucléaire dans son environnement de stockage
Exploitation, caractérisation et modélisation d’expériences dites « intégrales » d’altération de verres destinés au confinement de déchet nucléaires (SON68 et AVM4) en présence de fer, de matériau cimentaire et d’argilite du site de Bure dans deux configurations géométriques : l’une simulant une alvéole de stockage, l’autre mélangeant intimement les matériaux en présence. Ces essais ont été lancés pour le compte de l’ANDRA entre 2017 et 2018 et leur caractérisation a débuté ces deux dernières années.
Calcul de la conductivité thermique du combustible UO2 et l’influence des défauts d’irradiation
L’étude du comportement sous irradiation du combustible nucléaire fait l’objet de simulations dont les résultats dépendent étroitement de ses propriétés thermiques et de leurs évolutions avec la température et l’irradiation. La conductivité thermique de l’oxyde 100% dense peut à présent être obtenue par dynamique moléculaire à l’échelle du monocristal, en calculant les constantes de forces d’ordre 2, 3 et 4[1], mais l’effet de défauts comme les défauts induits par l’irradiation (boucle d’irradiation, amas de lacunes) voire même des joints de grains (céramique avant irradiation) restent difficiles à évaluer de façon couplée.
L’ambition de ce travail est d’inclure des défauts dans des supercellules et de calculer leur effet sur les constantes de force. En fonction de la taille des défauts considérés nous utiliserons soit la DFT soit un potentiel empirique ou numérique pour effectuer la dynamique moléculaire. AlmaBTE permet de calculer la diffusion des phonons par des défauts ponctuels [2] et le calcul de la diffusion des phonons par les dislocations et leur transmission à une interface ont aussi été récemment implémentés. Ainsi, le chaînage calculs atomistiques / AlmaBTE permettra de déterminer l’effet de la miscrostructure polycristalline et des défauts d’irradiation sur la conductivité thermique. A l’issue de ce post-doc, les propriétés obtenues seront utilisées dans les outils de simulation existants afin d’estimer la conductivité d’un élément de volume (effet additionnel de la microstructure notamment du réseau poreux, méthode FFT), donnée qui sera enfin intégrée dans la simulation du comportement de l’élément combustible sous-irradiation.
Le travail s’effectuera au sein du Département d’Études des Combustibles du CEA, dans un environnement scientifique caractérisé par une grande expertise sur la modélisation des matériaux, en collaboration étroite avec d’autres équipes du CEA à Grenoble et en région parisienne expertes des calculs atomistiques. Les résultats