Développement de méthodes Monte-Carlo pour la simulation du transfert radiatif : application aux accidents graves

Ce sujet de post-doctorat porte sur le développement de méthodes Monte-Carlo par lancer de rayons pour la modélisation du transfert de chaleur par rayonnement dans le cadre des accidents graves. En partant d’un cadre logiciel abouti pour la simulation Monte-Carlo du transport de particules dans le contexte de la physique des réacteurs et la radioprotection, on cherchera à adapter les méthodes existantes à la problématique du transfert radiatif, dans un cadre de calcul haute performance. Pour ce faire, on développera une hiérarchie d’approximations associées au transfert radiatif de chaleur qui ont pour vocation de permettre la validation de modèles simplifiés mis en œuvre dans le cadre de la simulation numérique des accidents graves des réacteurs nucléaires. Orienté sur l’algorithmique et la performance de simulation, ce travail se veut une « preuve de principe » de la possible mutualisation logicielle autour de la méthode Monte-Carlo pour le transport de particules d’une part et le transfert de chaleur par rayonnement d’autre part.

Caractérisation d’alliages de vanadium

Les alliages de vanadium, largement étudiés dans le cadre d’application dans les réacteurs de fusion, sont envisagés pour constituer le gainage du combustible dans les futurs réacteurs rapides refroidis au sodium ou au gaz. Le CEA a donc lancé en 2009 un programme visant à statuer d’ici fin 2012 sur les potentialités de tels matériaux au regard du cahier des charges des réacteurs rapides.
Une étude préliminaire de plaques de V-4Cr-4Ti a été réalisée au DMN/SRMA/LA2M (i) sur une nuance de référence japonaise et (ii) sur une nuance spécifiquement fabriquée pour cette étude. On s’est en particulier focalisé sur la structure de recristallisation du matériau après mise en forme (morphologie, taille des grains, effet de la température) et la microstructure fine (précipités nanométriques de Ti(O,C,N) ). En 2011, la fabrication de tubes est envisagé pour se rapprocher de l’objet gaine final. Le travail post-doctoral proposé vise à suivre les fabrications et à préciser l’impact du procédé sur la microstructure, les paramètres de recristallisation et les propriétés mécaniques.

Modélisation thermodynamique des oxydes complexes pour les capteurs intelligents

La recherche de matériaux plus efficaces suit un schéma qui a très peu changé au fil des ans, impliquant des phases peu automatisées de synthèse et de caractérisation. Bien que ce schéma ait prouvé sa force dans la création de bases de connaissances, il reste inefficace car il est chronophage et couvre généralement une gamme réduite de compositions. Le projet Hiway-2-mat (https://www.pepr-diadem.fr/projet/hiway-2-mat/) vise à utiliser des approches combinatoires à haut débit et à développer des configurations autonomes pour explorer les espaces de composition des matériaux d'oxyde complexes, dans le but d'accélérer la découverte de matériaux pour les capteurs intelligents. Dans ce contexte, la méthode CALPHAD est un outil précieux pour l'exploration des matériaux, car elle peut fournir des informations sur le rôle de l'état d'oxydation ou de la pression partielle de l'oxygène sur la stabilité de la phase, et sur le degré de substitution des éléments dopants dans une matrice d'oxyde. L'objectif est de calculer les diagrammes de phase d'oxydes complexes à partir des bases de données disponibles, soit pour mieux préparer les expériences combinatoires, soit pour piloter le robot autonome à la volée, en fournissant des informations supplémentaires pour la caractérisation en ligne.
Votre rôle sera de:
1)Effectuer des simulations thermodynamiques en utilisant la méthode CALPHAD et le logiciel Thermo-Calc pour prédire la gamme de stabilité d'un ensemble d'oxydes complexes (Ba/Ca/Sr)(Ti/Zr/Sn/Hf)O3 à différentes températures et pressions partielles d'oxygène. Le candidat effectuera également un examen critique des données thermodynamiques disponibles dans la littérature.
2)Inclure des éléments clés dans la base de données disponible.
3)Développer une méthode de screening rapide pour rechercher les compositions les plus prometteuses.
4)Collaborer avec l'équipe de développement de la plateforme expérimentale pour orienter les futurs essais.

Top