Optimisation des Phytotechnologies pour la Réhabilitation des Sites Nucléaires Contaminés
Le CEA recrute un(e) post-doctorant(e) pour un projet de recherche visant l’optimisation des phytotechnologies pour la réhabilitation des sites nucléaires contaminés. Cette recherche s’inscrit dans le cadre de la gestion des risques et de la réhabilitation des sols contaminés, en particulier ceux issus du démantèlement des installations nucléaires. Le projet a pour objectif de développer un modèle mécanistique avancé des transferts sol-plante, afin d’approfondir la compréhension de la mobilité des contaminants dans les sols faiblement contaminés et d'optimiser l’usage de plantes adaptées pour stabiliser ces contaminants.
Amélioration du procédé AmSel pour la séparation de l'américium seul dan sle cadre du programme européen TRANSPARANT
L’uranium et le plutonium peuvent d’ores et déjà être industriellement séparés des combustibles nucléaires usés grâce au procédé d’extraction PUREX. En récupérant l’américium à partir d’un raffinat PUREX, la capacité d’un stockage géologique profond des déchets ultimes peut être significativement améliorée. Cette sépration peut être réalisée en combinant stratégiquement une molécule extractante sélective en phase organique (le TODGA) et un agent complexant hydrosoluble en phase aqueuse (PrOH-BPTD). Le TODGA permet de co-extraire l’américium, le curium et les lanthanides en phase organique, sélectivement des produits de fission (PF). Le développement de ce procédé, appelé AmSel, a déjà été initié au cours des programmes européens précédents mais la sélectivité doit encore être améliorée, en particuliers le facteur de séparation Cm/Am. Afin de séparer ces éléments, qui ont des propriétés physico-chimiques très similaires, à la fois l’extractant lipophile et l’agent complexant utilisé en milieu acide nitrique doivent être optimisés. Des tests d’extraction batch seront réalisés en boite à gants dans l’installation ATALANTE au CEA Marcoule avec les radionucléides d’intérêt (241Am, 244Cm, 152Eu). Des essais permettront également de quantifier l’extraction et la désextraction des produits de fission (Tc, Pd, Zr, Mo, Ru, Sr). Des expériences complémentaires utilisant une charge simulée contenant tous les éléments (dont l’Am) à des concentrations nominales permettront de valider la capacité de charge et les performances de séparation. La résistance à la radiolyse du ligand utilisé pour désextraire sélectivement l’américium sera évaluée par des expériences de radiolyse alpha in situ avec de l’241Am en concentration nominale. La dégradation sera évaluée par des analyses ESI-MS couplées à l’HPLC pour identifier les produits de dégradation et les complexes formés.
Méthode des amplitudes finies pour la prise en compte du processus d'échange de charges dans les modèles d'interaction nucléaire forte
La méthode des amplitudes finies (QFAM) est devenue l'outil de choix pour effectuer des calculs rapides et précis de la fonction force nucléaire. Cette méthode est particulièrement intéressante lorsqu'elle est appliquée à des noyaux déformés, pour lesquels les approches traditionnelles basées sur des diagonalisations de matrices deviennent presque irréalisables.
Le but du projet actuel est d'étendre le code QFAM développé au CEA pour permettre les processus d'échange de charge et de calculer les taux de désintégration ß- pour tous les noyaux pairs de masse moyenne et lourds entre la vallée de stabilité et la limite de stabilité en utilisant les interactions de Gogny nouvellement ajustées.
En créant une base de données partagée des taux de désintégration ß- avec des collaborateurs travaillant dans d'autres directions du CEA, nous effectuerons une comparaison systématique avec les données existantes afin d'identifier d'éventuelles différences.
Développement de cellules Potassium-ion performantes et respectueuses de l'environnement
Les batteries Lithium-ion constituent un système de référence en termes de densité d’énergie et de durée de vie au point de devenir une technologie clé de la transition énergétique notamment en alimentant les voitures électriques. Cependant, cette technologie repose sur une utilisation importante d’éléments peu abondants et sur des procédés de fabrication énergivores.
Dans cette optique, notre équipe développe de nouvelles batteries Potassium-ion présentant des performances élevées et n’utilisant que des éléments abondants et des procédés de fabrication respectueux de l’environnement.
Pour ce projet ambitieux et innovant, le CEA-LITEN (acteur majeur européen dans le domaine de la recherche pour l'énergie) recrute un chercheur post doctoral en chimie des matériaux. L’offre s’adresse à un jeune chercheur talentueux possédant un excellent niveau scientifique et un gout prononcé pour la dissémination de ses résultats au travers de brevets et de publications scientifiques.
ANALYSES MULTI CRITERES DES TECHNOLOGIES DE PRODUCTION D’HYDROGENE PAR ELECTROLYSE
Le LITEN, fortement impliqué sur les technologies d’électrolyse, souhaite comparer via une analyse multi critères toutes les technologies d’électrolyse aujourd’hui soit disponibles commercialement (AEL, PEMEL), en phase de pré-industrialisation (SOEL), ou en phase de R&D (AEMEL et PCCEL).
Nos études précédentes étaient basées sur des cas d’usage précis (hypothèses figées sur la taille de l’usine, la source d’électricité, la technologie, …).
L’objectif de ces nouveaux travaux est de pouvoir positionner les différentes technologies d’électrolyse selon des paramètres qui seront à définir en début de projet, ces paramètres étant de type contextuel (ex nombre d’heures de fonctionnement, flexibilité attendue), techniques (ex rendement, durée de vie) ou technico économiques (ex CAPEX OPEX) et environnementaux (ex impacts GES, matières). . Il s’agira ici de développer une méthodologie originale qui permette de définir les domaines de pertinence de chacune des technologies d’électrolyse selon ces paramètres, en fonction par exemple du cout de l’hydrogène produit et de son impact environnemental
Modélisation du comportement en corrosion des aciers inoxydables en milieu acide nitrique avec la température
La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente notamment dans le cadre de la pérennisation de son activité (enjeu industriel majeur). Cette maîtrise passe par une meilleure compréhension des phénomènes de corrosion des aciers par l'acide nitrique (agent oxydant mis en jeu lors des étapes de recyclage), et in-fine par leur modélisation.
Les matériaux d’intérêt sont les aciers inoxydables austénitiques Cr-Ni, à très basse teneur en carbone. Une étude récente sur acier inoxydable riche en Si, qui a été développé dans le but d'améliorer la tenue en corrosion de ces aciers vis-à-vis de milieux très oxydants comme ceux rencontrés en certains endroits de l’usine [1, 2] ; a montré que la corrosion de cet acier était thermiquement activée entre 40 °C et 142 °C avec un comportement différent en-dessous et au-dessus de la température d’ébullition (107 °C) de la solution [3]. En effet, entre 40 °C et 107 °C, l’énergie d’activation est de 77 kJ/mol et au-dessus de l’ébullition, elle est beaucoup plus faible et vaut 20 kJ/mol. Cette différence peut être due à une barrière énergétique plus faible ou à une étape cinétiquement limitante différente.
L’enjeu de ce sujet post doctoral est de disposer d’un modèle de corrosion prédictif en fonction de la température (en deçà et au-delà de l’ébullition). Dans cet objectif, il sera important d’analyser et d’identifier les espèces impliquées dans le processus de corrosion (phase liquide et gaz) en fonction de la température mais aussi de caractériser les régimes d’ébullition. Ce modèle pourra expliquer la différence d’énergies d’activation de cet acier riche en Si en-dessous et au-dessus de la température d’ébullition d’une solution d’acide nitrique concentrée mais aussi permettra d’optimiser les procédés de l’usine où la température et/ou le flux thermique ont un rôle important.
Etude du comportement sismique des tuyauteries via des modèles mécaniques de différents niveaux de fidélité
Les tuyauteries font partie des équipements pour lesquels une attention particulière est portée dans le cadre du réexamen de sûreté ou de la conception des installations nucléaires. Les systèmes de tuyauterie des installations nucléaires sont conçus conformément aux codes, normes et réglementations, pour résister aux chargements qui se produisent ou pourraient se produire pendant la durée de vie nominale d’une installation. Ces systèmes doivent donc être conçus pour résister aux chargements accidentels tels que les séismes. Le retour d’expérience montre que les tuyauteries se comportent généralement bien en cas de séisme. Lorsque des défaillances sont observées, elles sont plutôt dues à un mouvement important des ancrages, à des matériaux fragiles, à des joints non soudés, à la corrosion, à des défaillances des supports de tuyauterie ou à des interactions sismiques. En pratique, pour pouvoir estimer le comportement sismique au-delà du niveau de dimensionnement et les risques de défaillance associés, l’ingénieur peut mettre en œuvre des modèles numériques impliquant des degrés de raffinement variés en fonction des besoins. Cette étude consiste à faire un bilan sur les capacités de modélisation numérique des tuyauteries sous séisme. Pour des raisons de temps de calculs, se sont souvent des modélisations globales de type poutre qui sont plébiscitées, en considérant des lois de matériaux simplifiées comme des lois de matériaux bilinéaires avec écrouissage cinématique. On connait les limitations « théoriques » de ces modélisations mais il est difficile d’avoir les idées claires concernant leurs limites d’applicabilité effectives en fonction du niveau de sollicitation et du dommage visé. Pour faire ce bilan, on propose d’interpréter, à l’aide de différents modèles numériques impliquant différents degrés de fidélité, les résultats de la campagne expérimentale menée par le BARC et qui a servi au benchmark MECOS (MEtallic COmponent margins under high Seismic loads).
Conception et essais accélérés de CFO de corrosion adaptés aux structures en béton armé
La corrosion des armatures de renfort en acier est la principale pathologie menaçant la durabilité des ouvrages de génie civil. Aujourd’hui le suivi des ouvrages est principalement réalisé au moyen d’inspections visuelles périodiques voire d’auscultations (potentiels de corrosion, mesures ultrasonores, carottages…) qui s’avèrent peu satisfaisantes. Il existe donc un besoin d’instrumentation capable de détecter l’initiation et la localisation de la corrosion des armatures dans les bétons et d’assurer un suivi à long terme (plusieurs dizaines d’années, voire plus). Dans le contexte des structures du GC, la réflectométrie dans le domaine fréquentiel (Optical Frequency-Domain Reflectometry - OFDR) apparaît comme une solution métrologique adaptée du fait de sa résolution centimétrique et de sa portée de mesure (70 mètres en version standard, soit plusieurs milliers de points de mesure le long d’une fibre optique).
Contenu du travail : Il sera d’adapter la conception de ce capteur à fibre optique (CFO) pour augmenter sa durabilité puis d’en vérifier l’applicabilité en laboratoire. Dans la pratique et dans un premier temps, la personne recrutée sera amenée à travailler sur la durabilité de la liaison entre la fibre optique et l’armature. Deux voies différentes sont envisagées : la projection de poudres céramiques par torche plasma et le sol-gel. Ces deux procédés sont exempts d’effet de pile car ils impliquent des matériaux isolants (céramiques) et sont déjà déployés dans l’industrie dans différents domaines civils et militaires. Dans un deuxième temps, des éprouvettes équipées avec le CFO seront testées en laboratoire selon les cas d’usage classiques du génie civil, à savoir : corrosion localisée (piquration induite par l’exposition aux ions chlorure) et corrosion uniforme (corrosion généralisée induite par la carbonatation du béton d’enrobage). Des acquisitions OFDR seront menées périodiquement dans le temps en parallèle à la métrologie conventionnelle (potentiel, etc.
Mise au point, validation métrologique et essais en milieu extérieur d'une unité de mesure Raman/FO multitrack dédiée à la sécurité de futures stations cryogéniques de distribution d’hydrogène liquide
Contexte : Les usages domestique et industriel de l’hydrogène liquide comme carburant du futur nécessitent de définir un code de sécurité adapté. Actuellement, les critères de séparation des réservoirs ont été définis par anticipation selon une approche conservatoire. Il est donc nécessaire de réaliser des expériences en vraie grandeur (épandages) afin d’alimenter des codes de calculs et bâtir une normalisation pertinente. Ces expériences requièrent la mise en œuvre d’une instrumentation adaptée à la mesure de tous les gaz présents en espace libre (O2, N2, H2O, H2) afin d’établir un relevé de pressions partielles au cours de chaque essai, corrélé aux autres moyens de mesure mis en place (thermométrie, catharométrie, PIV, BOS,…).
Mission : Dans le contexte d’un projet ANR-PEPR (ESKHYMO) géré par le CEA Liten, une unité de mesure spectrométrique Raman/FO Multitrack sera mise au point conjointement par le CEA List et le CEA DES sur la base d’un dispositif existant. La mesure Raman est multi-élémentaire, multi-track (une seule unité de mesure pour plusieurs sondes), non-déflagrante, et délivre une mesure autonormalisée à une espèce de référence (le plus souvent l’azote à la pression atmosphérique). L’unité de mesure Raman/FO comportera un laser, un spectromètre associé à une caméra CCD scientifique et un circuit de fibres optiques permettant le déport de la mesure. La conception des sondes Raman/FO sera également basée sur une réalisation existante au CEA que l’on cherchera à miniaturiser en vue d’un déploiement en conditions de terrain. Quatre sondes Raman/FO seront réalisées puis ensuite étalonnées en air (enceinte climatique) et en hydrogène (tube à choc ou chambre à vide) au CEA DES DM2S à Saclay. Finalement, le dispositif final sera déployé sur site d’essai pour procéder à des mesures multigaz lors des expériences d’épandage, en partenariat avec l’industriel Air Liquide et les organismes accréditeurs (INERIS).
Compétences : Optique, laser, fibres optiques
Comportement sismique d’un pont roulant
Les ponts roulants font partie des équipements d’installations industrielles pour lesquels il convient de porter une attention particulière. Ils sont en effet généralement situés en partie haute des ouvrages de génie civil et donc potentiellement soumis à des niveaux importants d’accélération en cas de séisme du fait de l’amplification induite par la structure porteuse. En conséquence, ils sont potentiellement sujets à des efforts significatifs et peuvent être la source d’efforts importants sur la structure de supportage. L’enjeu pour la sûreté est de se prémunir face au risque d’agression avec des équipements sensibles, en cas d’instabilité des éléments constitutifs du pont ou de la structure de supportage. Cette étude s’inscrit dans la continuité de deux précédentes campagnes d’essais qui ont été menées sur la table vibrante Azalée du laboratoire EMSI sur une maquette de pont roulant. Elle vise à fournir des modèles numériques validés de ponts roulants. Deux axes de recherche sont envisagés. Le premier axe consiste à compléter les campagnes d’essais « historiques » par des essais statiques sur la maquette pour justifier le recalage des modèles numériques. Le second axe consiste à exploiter, par confrontation essais/calculs, l’ensemble des essais qui ont été réalisés dans le cadre d’une campagne d’essais précédente et qui ont été réalisés à des fins d’analyse statistique.