Modélisation du dispositif d'irradiation MADISON du RJH

Le Réacteur Jules Horowitz (RJH), en cours de construction sur le site du CEA de Cadarache, aura pour objectifs de réaliser les irradiations de matériaux et combustibles en soutien à la filière nucléaire française et internationale et également de produire des radio éléments à usage médical. Pour mener à bien ses missions, le réacteur comportera de nombreux dispositifs expérimentaux. En particulier, le dispositif MADISON, qui est actuellement en cours de conception, permettra d’irradier 2 ou 4 échantillons combustibles en conditions nominales stationnaires ou en transitoires opérationnels. La boucle est représentative des conditions de fonctionnement des réacteurs à eau légère et fonctionne en convection forcée monophasique et diphasique.
L’objectif du Post-Doc consiste à modéliser précisément le dispositif MADISON et l'ensemble des échanges de chaleur associés afin de contribuer à la détermination du bilan thermique d'ensemble au cours de l’essai et d'améliorer ainsi la précision sur la détermination de la puissance linéaire imposée aux échantillons. Dans cet objectif, une modélisation couplée thermique (décrivant les crayons combustibles, les structures du dispositif) / thermohydraulique CFD (décrivant le caloporteur) sera établie à l'aide du code NEPTUNE_CFD/SYRTHES. La validation de la modélisation sera effectuée sur la base des résultats acquis dans le cadre d’une modélisation similaire réalisée sur les dispositifs mono-crayon ISABELLE-1 et ADELINE des réacteurs OSIRIS et RJH. La démarche proposée s'intègre dans la logique de développement de jumeaux numériques des dispositifs expérimentaux du RJH.

Mesure in-situ de la composition de liquide par holographie numérique en ligne

Cette offre de postdoctorat fait partie du projet ANR ATICS (Imagerie tri-dimensionnelle avancée de systèmes particulaires complexes), qui vise à développer un ensemble d'outils et de méthodes avancées pour la modélisation et la reconstruction d’hologrammes, afin de décupler les capacités pratiques de l'imagerie tridimensionnelle par holographie numérique en ligne. Il s'agit d'un projet de recherche collaboratif d’une durée de quatre ans, mené par quatre laboratoires universitaires, du CNRS, de grandes écoles et du CEA. Dans ce cadre, l'objectif des travaux de postdoc est d'apporter des connaissances et des données physiques aux autres membres de l’équipe, ainsi que de démontrer l’apport des développements théoriques et numériques réalisés dans ATICS dans deux domaines de recherche sur lesquels les partenaires sont régulièrement impliqués : les écoulements multiphasiques et les procédés de recyclage. Pour ce faire, il s'agira de développer de nouveaux dispositifs expérimentaux de mesure de la composition de liquides en exploitant le potentiel de l’holographie numérique en ligne à différentes échelles, depuis la microfluidique jusqu’à l’étude des sprays en lévitation acoustique. Les travaux seront conduits en relation étroite avec les équipes du laboratoire IUSTI de l'Université d'Aix-Marseille.

Etude thermochimique et thermodynamique des sels fondus chlorures

L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour le stockage d’énergie ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
L’objectif du sujet de post-doctorat proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en une étude approfondie des propriétés chimiques de différents chlorures fondus : le sel ternaire de base (NaCl-MgCl2-CeCl3) mais également celles des potentiels produits de corrosion/ de fission/ d’activation (MxCly avec M=Cr, Fe, Te, Nd, Ni, Mo,…). Les coefficients d’activités et les limites de solubilité de ces éléments métalliques seront déterminés à l’aide de différentes techniques telles que l’électrochimie et la spectrométrie de masse en cellule d’effusion de Knudsen. Cette étude pourra être complétée, en fonction des besoins, par la détermination des températures de transition de phase et des capacités thermiques en utilisant la calorimétrie à balayage différentiel

Traitement de signaux de détecteurs gamma ultra-rapides par Machine Learning

Au sein du projet ANR AAIMME dédié à l'imagerie médicale par Tomographie à Émission de Positrons (TEP), nous proposons un post-doctorat de 24 mois qui s’intéressera principalement au traitement des signaux du détecteur ClearMind conçu au CEA-IRFU. Les développements du détecteur ont été effectués dans l’objectif d’obtenir une datation précise des interactions ayant lieu dans la zone sensible. Ils consistent en des détecteurs scintillateurs PbWO4 couplés à un photomulitplicateur dans une galette à microcanaux, dont les signaux sont numérisés par des modules d’acquisition rapide SAMPIC. L’intérêt principal de cette conception réside en l’exploitation des photons rapides Cherenkov et des photons de scintillation pour reconstruire le plus précisément possible les interactions dans le cristal.
Une des principales difficultés réside dans l’analyse des signaux produits par le détecteur : la complexité et l’intrication des signaux nécessitent un traitement dédié.
L’objectif de ce post-doctorat est donc d’élaborer des algorithmes de Machine Leaning de confiance afin de reconstruire les paramètres de l’interaction gamma dans le détecteur avec la plus grande précision possible à partir des signaux détecteurs.

Adaptation de l'expérience de Delayed Hydride Cracking (DHC) aux matériaux irradiés

L’objectif de cette étude est de « nucléariser » l’« expérience de DHC » développée dans le cadre de la thèse de Pierrick FRANCOIS (2020-2023), permettant de créer dans des conditions de laboratoire le phénomène de DHC sur des gaines de Zircaloy, afin de déterminer la ténacité de ce matériau en cas de DHC : K_(I_DHC ).
Le terme « nucléariser » désigne le processus d’adaptation de l’expérience pour pouvoir tester des matériaux irradiés dans des enceintes dédiées (appelées cellules blindées), où les matériaux sont testés via des bras télémanipulateurs. Les protocoles décrits dans la thèse de Pierrick François devront donc être adaptés, si possible simplifiés, pour pouvoir être transposés en cellules blindées. Cela nécessitera des échanges approfondis avec les personnes en charge des essais, et l’utilisation des outils de simulation numérique développés dans le cadre de cette même thèse. Le développement de cette procédure en cellule blindée sera utilisé par le post-doctorant afin de qualifier le risque de DHC lors de l’entreposage à sec des assemblages combustible en quantifiant la ténacité en DHC après irradiation du gainage.

Optimisation des Phytotechnologies pour la Réhabilitation des Sites Nucléaires Contaminés

Le CEA recrute un(e) post-doctorant(e) pour un projet de recherche visant l’optimisation des phytotechnologies pour la réhabilitation des sites nucléaires contaminés. Cette recherche s’inscrit dans le cadre de la gestion des risques et de la réhabilitation des sols contaminés, en particulier ceux issus du démantèlement des installations nucléaires. Le projet a pour objectif de développer un modèle mécanistique avancé des transferts sol-plante, afin d’approfondir la compréhension de la mobilité des contaminants dans les sols faiblement contaminés et d'optimiser l’usage de plantes adaptées pour stabiliser ces contaminants.

Développement de cellules Potassium-ion performantes et respectueuses de l'environnement

Les batteries Lithium-ion constituent un système de référence en termes de densité d’énergie et de durée de vie au point de devenir une technologie clé de la transition énergétique notamment en alimentant les voitures électriques. Cependant, cette technologie repose sur une utilisation importante d’éléments peu abondants et sur des procédés de fabrication énergivores.
Dans cette optique, notre équipe développe de nouvelles batteries Potassium-ion présentant des performances élevées et n’utilisant que des éléments abondants et des procédés de fabrication respectueux de l’environnement.
Pour ce projet ambitieux et innovant, le CEA-LITEN (acteur majeur européen dans le domaine de la recherche pour l'énergie) recrute un chercheur post doctoral en chimie des matériaux. L’offre s’adresse à un jeune chercheur talentueux possédant un excellent niveau scientifique et un gout prononcé pour la dissémination de ses résultats au travers de brevets et de publications scientifiques.

ANALYSES MULTI CRITERES DES TECHNOLOGIES DE PRODUCTION D’HYDROGENE PAR ELECTROLYSE

Le LITEN, fortement impliqué sur les technologies d’électrolyse, souhaite comparer via une analyse multi critères toutes les technologies d’électrolyse aujourd’hui soit disponibles commercialement (AEL, PEMEL), en phase de pré-industrialisation (SOEL), ou en phase de R&D (AEMEL et PCCEL).
Nos études précédentes étaient basées sur des cas d’usage précis (hypothèses figées sur la taille de l’usine, la source d’électricité, la technologie, …).
L’objectif de ces nouveaux travaux est de pouvoir positionner les différentes technologies d’électrolyse selon des paramètres qui seront à définir en début de projet, ces paramètres étant de type contextuel (ex nombre d’heures de fonctionnement, flexibilité attendue), techniques (ex rendement, durée de vie) ou technico économiques (ex CAPEX OPEX) et environnementaux (ex impacts GES, matières). . Il s’agira ici de développer une méthodologie originale qui permette de définir les domaines de pertinence de chacune des technologies d’électrolyse selon ces paramètres, en fonction par exemple du cout de l’hydrogène produit et de son impact environnemental

Modélisation du comportement en corrosion des aciers inoxydables en milieu acide nitrique avec la température

La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente notamment dans le cadre de la pérennisation de son activité (enjeu industriel majeur). Cette maîtrise passe par une meilleure compréhension des phénomènes de corrosion des aciers par l'acide nitrique (agent oxydant mis en jeu lors des étapes de recyclage), et in-fine par leur modélisation.
Les matériaux d’intérêt sont les aciers inoxydables austénitiques Cr-Ni, à très basse teneur en carbone. Une étude récente sur acier inoxydable riche en Si, qui a été développé dans le but d'améliorer la tenue en corrosion de ces aciers vis-à-vis de milieux très oxydants comme ceux rencontrés en certains endroits de l’usine [1, 2] ; a montré que la corrosion de cet acier était thermiquement activée entre 40 °C et 142 °C avec un comportement différent en-dessous et au-dessus de la température d’ébullition (107 °C) de la solution [3]. En effet, entre 40 °C et 107 °C, l’énergie d’activation est de 77 kJ/mol et au-dessus de l’ébullition, elle est beaucoup plus faible et vaut 20 kJ/mol. Cette différence peut être due à une barrière énergétique plus faible ou à une étape cinétiquement limitante différente.
L’enjeu de ce sujet post doctoral est de disposer d’un modèle de corrosion prédictif en fonction de la température (en deçà et au-delà de l’ébullition). Dans cet objectif, il sera important d’analyser et d’identifier les espèces impliquées dans le processus de corrosion (phase liquide et gaz) en fonction de la température mais aussi de caractériser les régimes d’ébullition. Ce modèle pourra expliquer la différence d’énergies d’activation de cet acier riche en Si en-dessous et au-dessus de la température d’ébullition d’une solution d’acide nitrique concentrée mais aussi permettra d’optimiser les procédés de l’usine où la température et/ou le flux thermique ont un rôle important.

Etude du comportement sismique des tuyauteries via des modèles mécaniques de différents niveaux de fidélité

Les tuyauteries font partie des équipements pour lesquels une attention particulière est portée dans le cadre du réexamen de sûreté ou de la conception des installations nucléaires. Les systèmes de tuyauterie des installations nucléaires sont conçus conformément aux codes, normes et réglementations, pour résister aux chargements qui se produisent ou pourraient se produire pendant la durée de vie nominale d’une installation. Ces systèmes doivent donc être conçus pour résister aux chargements accidentels tels que les séismes. Le retour d’expérience montre que les tuyauteries se comportent généralement bien en cas de séisme. Lorsque des défaillances sont observées, elles sont plutôt dues à un mouvement important des ancrages, à des matériaux fragiles, à des joints non soudés, à la corrosion, à des défaillances des supports de tuyauterie ou à des interactions sismiques. En pratique, pour pouvoir estimer le comportement sismique au-delà du niveau de dimensionnement et les risques de défaillance associés, l’ingénieur peut mettre en œuvre des modèles numériques impliquant des degrés de raffinement variés en fonction des besoins. Cette étude consiste à faire un bilan sur les capacités de modélisation numérique des tuyauteries sous séisme. Pour des raisons de temps de calculs, se sont souvent des modélisations globales de type poutre qui sont plébiscitées, en considérant des lois de matériaux simplifiées comme des lois de matériaux bilinéaires avec écrouissage cinématique. On connait les limitations « théoriques » de ces modélisations mais il est difficile d’avoir les idées claires concernant leurs limites d’applicabilité effectives en fonction du niveau de sollicitation et du dommage visé. Pour faire ce bilan, on propose d’interpréter, à l’aide de différents modèles numériques impliquant différents degrés de fidélité, les résultats de la campagne expérimentale menée par le BARC et qui a servi au benchmark MECOS (MEtallic COmponent margins under high Seismic loads).

Top