Etudes et développement d’un système laser dans l’UV pour la démonstration à l’échelle laboratoire de l’épuration isotopique du palladium (naturel).

Le palladium est un métal rare dont la demande mondiale est en forte augmentation. Or, il est présent en tant que produit de fission dans les combustibles nucléaires usés qui sont retraités en France. Il serait donc intéressant de recycler ce métal. Pour cela, il est nécessaire de procéder à une épuration isotopique, afin de supprimer un des isotopes du palladium, le 107, qui est un radionucléide artificiel à vie longue émetteur béta. Dans le cadre d'un nouveau projet sur 4 ans construit en réponse à l'appel d'offre du Plan d'Investissement et d'Avenir de l’État, le Service d’Etude des Procédés d’Enrichissement propose un contrat post-doctoral portant sur le développement d’un système laser dans l’UV pour le procédé de séparation isotopique du palladium par Lasers actuellement en cours de développement. L’objectif principal du projet est la démonstration finale de la faisabilité de séparation de palladium naturel (et non radioactif) pour la phase suivante de développement d’un premier pilote.
Le post-doctorant devra développer des lasers prototypes de procédé à haute cadence en partant du visible (système lasers colorant) jusqu’à l'UV. Le passage dans l’UV se fait par doublage de fréquence avec des objectifs élevés en terme de performance. Il s’agit d’utiliser un cristal doubleur de fréquence de type BBO, LBO, KDP ou autre. Pour ce faire, le post-doctorat participera à la définition de ce cristal, mais aussi au développement de l’environnement du cristal doubleur (comportement, performances attendues et la tenue au flux des différents matériels). Des échanges seront mis en place sur ce sujet spécifique avec des spécialistes reconnus au sein de la Direction de la Recherche Fondamentale du CEA. La programmation (en Python et/ou sous Labview) de ces outils ou asservissements est à développer également. Une attention particulière sera portée sur les publications à réaliser essentiellement dans le cadre du doublage de fréquence, sujet complexe très étudié mondialement.

Convection naturelle à haut Rayleigh pour la Securité des réacteurs: 2ème année

Le postdoc est associé à la deuxième année du projet CORAYSE. La sécurité des réacteurs de type SMR est basée sur des systèmes passifs : le réacteur est placé dans une piscine où la chaleur résiduelle est évacuée par convection naturelle en cas d’accident. Toutefois à ce jour on n’appréhende pas, ni par le calcul ni sur la base d’expériences, l’échange thermique entre le réacteur et l’eau, car la convection naturelle n’a fait l’objet de corrélations d’échange thermique que jusqu’à des nombres de Rayleigh Ra de 10^12 (le nombre de Rayleigh Ra décrit le rapport entre le transport par convection naturelle et le transport diffusif). Pour un SMR, ce Ra peut dépasser 10^16. La maitrise par des calculs numériques et des expériences est donc un enjeu majeur de sécurité. Un tel objectif nécessite toutefois que plusieurs défis soient relevés :
• Un défi numérique : la capacité du code à modéliser de manière suffisamment précise et dans un temps raisonnable des écoulements turbulents à très haut nombre de Rayleigh est encore du domaine de la recherche. La simulation numérique aux plus hauts Ra envisagés représente un défi en termes de temps calcul, nécessitant des simulations sur des calculateurs « exascale ». Une adaptation des codes existants à cette situation est donc indispensable.
• Un défi expérimental : au niveau de la validation du code, la réalisation d’une expérience représentative, dans laquelle un nombre de Rayleigh supérieur à 10^16 puisse être atteint, nécessite une expérience à l’échelle 1 (donc très onéreuse), ou bien une expérience avec un autre fluide – par exemple l’hélium liquide - dont les propriétés physiques (viscosité, dilatation thermique,…) permettront d’atteindre en laboratoire des Rayleigh comparables.

Modélisation CFD des mouvements de gaz en cavités salines

Storengy, société du groupe Engie, est l’un des leaders mondiaux en matière de stockage souterrain de gaz. Storengy opère en particulier des cavités salines de stockage de gaz naturel. Les cavités sont localisées dans des couches de sel gemme à environ 1km de profondeur ; elles ont un volume de plusieurs centaines de milliers de m3. Ces stockages souterrains assurent une réponse rapide aux pics de consommation de gaz et également à la modulation saisonnière de la demande. Ils contribuent aussi à la sécurité de la fourniture d’énergie en permettant de faire face aux défaillances temporaires de sources d’approvisionnement de gaz naturel.
Storengy SAS s’est tourné, courant 2019, vers le CEA pour avoir un appui sur ces aspects. Une étude intitulée « Modélisation du stockage de gaz (CH4 et H2) en cavités salines avec TrioCFD » s’est déroulée en 2020. Des premiers calculs pour des cavités parallélépipédiques (géométrie simplifiée) en VDF (différences finies) monophasique en régime incompressible et quasi-compressible ont été menés. Ceux-ci ont mis en évidence que le modèle quasi-compressible implémenté dans TrioCFD ne permettait pas de prendre en compte les effets de la stratification du gaz en cavité. Un nouveau modèle « weakly-compressible » a été développé afin de rendre compte de la spécificité des écoulements en cavité.
L'objectif est de poursuivre ces travaux et de développer une modélisation thermo-hydraulique sur la base du modèle TrioCFD du stockage d’hydrogène en cavité dans des cavités de forme réaliste et en tenant des conditions d’opération des cavités (phases d’injection et de soutirage). Les simulations seront, dans un premier temps, réalisées
en gaz sec en tenant compte des échanges thermiques avec le massif, puis de en prenant en compte des échanges de masse avec la saumure.

Développement et application des méthodes de quantification inverse d'incertitudes pour la thermohydraulique dans le cadre du projet OECD/NEA ATRIUM

Concernant les méthodologies BEPU (Best Estimate Plus Uncertainty) pour l'analyse de sûreté des centrales nucléaires, l'une des questions cruciales est de quantifier les incertitudes d'entrée associées aux modèles physiques dans le code. Une telle quantification consiste à évaluer la distribution de probabilité des paramètres d'entrée nécessaires à la propagation de l'incertitude par une comparaison entre les simulations et les données expérimentales. Elle est généralement appelée Quantification d'Incertitude Inverse (IUQ).
Dans ce cadre, le Service de Thermohydraulique et Dynamique des Fluides (STMF) du CEA-Saclay a proposé un nouveau projet international au sein du groupe de travail WGAMA de l'OCDE/NEA. Il s'agit d'ATRIUM (Application Tests for Realization of Inverse Uncertainty quantification and validation Methodologies in thermal-hydraulics). Ses principaux objectifs sont de réaliser un benchmark sur des exercices pertinents de quantification de l'incertitude inverse (IUQ), de prouver l'applicabilité de la ligne directrice SAPIUM et de promouvoir les meilleures pratiques pour l'IUQ en thermohydraulique.
Il est proposé de quantifier les incertitudes associées à certains phénomènes physiques pertinents lors d'un accident de perte de réfrigérant (LOCA) dans un réacteur nucléaire. Deux exercices IUQ principaux de complexité croissante sont prévus. Le premier concerne l'écoulement critique à la rupture et le second est lié aux phénomènes de transfert thermique post-CHF. Une attention particulière sera consacrée à l'évaluation de l'adéquation des bases de données expérimentales pour l'extrapolation à l'étude d'un APRP dans un réacteur à échelle réelle. Enfin, les incertitudes du modèle d'entrée obtenues seront propagées sur un test d'effet intégral (IET) approprié pour valider leur application dans des expériences à plus grande échelle et éventuellement justifier l'extrapolation à l'échelle du réacteur.

Modélisation thermo-aéraulique d’un réacteur d’incinération

Le laboratoire des Procédés Thermiques Innovants (LPTI) du CEA Marcoule développe un procédé d’incinération-vitrification In-Can (PIVIC) visant le traitement des déchets mixtes organiques/métalliques générés par les installations de production du combustible MOX. Le programme de développement de ce procédé s’appuie sur des essais réalisés sur prototype échelle 1 mais également sur l’exploitation de l’outil de simulation numérique.
Le modèle thermo-aéraulique du réacteur d’incinération PIVIC, développé sous le logiciel Ansys-Fluent est bâti sur une articulation de modèles élémentaires (plasma, pyrolyse, combustion, transport particulaire).
Le travail proposé consiste à perfectionner le modèle, notamment en ce qui concerne les composantes pyrolyse/combustion : complexification de la chimie réactionnelle, prise en compte du caractère instationnaire du processus… Le niveau de représentativité du modèle thermo-aéraulique sera évalué sur la base d’une étude comparative exploitant des données expérimentales issues d’essais sur prototype. Parallèlement à ces travaux de développement, différentes études paramétriques seront réalisées afin de tester l’impact de certaines modifications de configuration du réacteur.
En plus des aspects de maîtrise et pilotage de l’incinération, un autre enjeu majeur du projet consiste à évaluer le taux d’encrassement radiologique des parois du réacteur lors de l’incinération d’un déchet contaminés en émetteurs alpha. L’évaluation de cet encrassement radiologique du réacteur s’appuiera sur un modèle d’entraînement particulaire (DPM) associé à un modèle d’interaction pariétal. Les résultats de simulation de taux d’encrassement seront confrontés à des données expérimentales issues d’analyses de dépôts collectés sur les parois du réacteur (essais réalisés en inactif avec simulants d’actinides). Ce travail comparatif pourra donner lieu à des modifications du paramétrage du modèle physique.

Expérimentation et simulation numérique de l’emballement thermique des batteries au Lithium

Dans le contexte actuel de transition énergétique, les batteries au lithium constituent aujourd’hui une technologie incontournable pour répondre au fort enjeu du stockage de l’énergie électrique. Cependant, des sollicitations sévères de batteries Li peuvent conduire à un phénomène d’emballement thermique, pouvant aller jusqu’à un départ de feu voire une combustion explosive de la cellule ou de la totalité du pack batterie. Si ce phénomène est bien connu de la communauté scientifique, la R&D liée à la problématique de la sécurité des batteries est encore naissante et doit être consolidée. L’objectif global de ce post-doctorat consiste à développer une stratégie de modélisation et de simulation numérique du phénomène d’emballement thermique des batteries au Lithium soumises à des sollicitations sévères, dans le but de mieux comprendre le phénomène, estimer le risque de propagation thermique du fait de la combustion des gaz, ou encore étudier les conséquences mécaniques de l’emballement (interaction fluide structure). Cette stratégie s’appuiera sur des campagnes d’essais expérimentaux réalisées dans le cadre du postdoc, et sur les outils numériques développés au CEA, dont EUROPLEXUS et Cast3M. Les travaux s’organiseront en 3 volets : Compréhension et modélisation des phénomènes mis en jeu sur la base d’essais (tube à choc, tests abusifs), Développement d’un modèle numérique représentatif des phénomènes identifiés, Modélisation intégrant l’interaction fluide/structure (déformation de l’enveloppe sous l’effet de la montée en pression).

Développement et optimisation de techniques de rafinement de maillage adaptatif (AMR) pour des problèmes d'intéraction fluide/structure dans un contexte de calcul haute performance

Le CEA développe actuellement un nouveau code de simulation pour la mécanique des structures et des fluides compressibles : Manta. Ce code a pour double objectif d'unifier les fonctionnalités des codes historiques implicite et explicite du CEA et d'être nativement orienté vers le calcul intensif. Grâce à de nombreuses méthodes numériques (éléments finis, volumes finis, résolutions de problèmes implicites ou explicites, ...), Manta permet de simuler différents types de problèmes mécaniques dynamiques ou statiques pour la structure et le fluide, ainsi que l'interaction fluide-structure.

Dans le cadre de la recherche d'optimisation et de gain en temps de calcul, une des techniques incontournables pour améliorer la précision des solutions tout en maîtrisant les coûts de calcul est l'adaptation dynamique du maillage (ou AMR pour « Adaptive Mesh Refinement »).

Ce postdoc s'attache à la définition et à la mise en œuvre d'algorithmes d'AMR dans un contexte de calcul haute performance pour des problèmes faisant intervenir des fluides et des structures en intéraction.

Une tâche préliminaire consistera à implémenter des fonctionnalités de raffinement de maillage hiérarchique dans Manta (sous-découpage/fusion de cellules, transferts des champs, critères de raffinement, création de liaisons pour les « hanging-nodes »). Ces travaux se feront si possible en s'appuyant sur des librairies externes.

Dans un second temps, il s'agira d'optimiser les performances des calculs parallèles à mémoire distribuée. En particulier, il sera essentiel de définir une stratégie d'équilibrage de charge entre les processus MPI, en particulier dans le cadre de problèmes d'intéraction fluide/structure.

Enfin, en particulier pour des calculs explicites, il faudra définir et mettre en œuvre des techniques d'adaptation du pas de temps en fonction du niveau de raffinement.

Ces deux derniers points donneront lieu à une ou plusieurs publications dans des revues spécialisées.

Mise en œuvre de capteurs permettant le suivi en ligne de la corrosion des aciers inoxydables en milieu acide nitrique chaud et concentré

La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente. Certaines installations de l’usine de la Hague devront d’ailleurs être remplacées très prochainement. Dans ce contexte, il est important pour l’industriel de développer des capteurs, résistants à l’acide nitrique concentré (˜ 2,5 mol/L) et à la température (de l’ambiante à 130 °C), permettant de suivre la corrosion en ligne.
L’objectif de ce travail est de fabriquer un capteur permettant de détecter la corrosion de l’acier.
Les challenges de ce sujet de post-doc sont essentiellement technologiques puisqu’il s’agira de développer ou d’utiliser des matériaux adaptés à des milieux acides nitriques concentrés et chauds.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée.

Description de l’évolution de la taille de grain et des densités de dislocations lors de la consolidation des aciers ODS

Les aciers renforcés par une dispersion d’oxydes nanométriques (généralement désignés aciers ODS) sont envisagés notamment comme matériau de gainage combustible des réacteurs de 4ème génération. Ces matériaux sont à l’heure actuelle élaborée classiquement par métallurgie des poudres. L‘évolution de la microstructure lors de l’élaboration n’est pas encore bien décrite. Des travaux récents menés au laboratoire ont porté sur l’évolution de la nano-précipitation lors de l’élaboration. L’objectif du post-doctorat est donc d’affiner la description de cette évolution, plus particulièrement vis-à-vis de la taille de grain et de la densité de dislocations. Ce sujet couple une approche expérimentale, aux travers d’analyses en microscopie électronique et en diffraction des rayons X, et une approche numérique, visant à définir une méthode optimisée pour le traitement de l’évolution des dislocations.

Stabilité sous irradiation de l'interface oxyde / métal d'alliage d'aluminium 6061-T6 traitée par oxydation anodique

L’alliage d’aluminium 6061-T6 a été utilisé par la fabrication des composants principaux du cœur du réacteur Jules Horowitz (RJH) en raison de sa bonne résistance à la corrosion, de ses bonnes propriétés mécaniques et de sa haute transparence aux neutrons. Afin d’améliorer la résistance à l’usure et à l’oxydation, certaines pièces subissent un traitement de surface appelé Oxydation Anodique dure (OAd) qui permet de forcer la croissance d’une couche d’oxyde qui renforce les propriétés tribologiques.
Sous irradiation, les structures du cœur du RJH sont soumises à un fort flux de neutrons qui modifie la microstructure et les propriétés de l’alliage, les neutrons rapides induisent des cascades de déplacements d’atomes et créent des défauts ponctuels qui se regroupent sous forme d’amas pour former des boucles de dislocation et des amas lacunaires tridimensionnels. Ces amas durcissent l’alliage et induisent un gonflement macroscopique. Dans l’alliage métallique d’aluminium 6061-T6, on observe également une dissolution des nano-précipités préexistants et la re-précipitation des éléments sous une forme hors équilibre. L’oxyde (Oad) est également sujet à des évolutions microstructurales sous irradiation (densité de boucles après irradiation, gonflement, amorphisation) mais il a néanmoins fait l’objet d’un nombre plus limité d’études.
Cette étude postdoctorale vise donc à caractériser la microstructure de la couche OAd, son évolution sous irradiation et sa résistance mécanique avant et après irradiation.

Top