Analyse de la qualité numérique de codes à l’aide de CADNA, Verificarlo et Verrou

Les codes de calcul reposent sur l’arithmétique à virgule flottante pour représenter des nombres réels et les opérations qui leur sont appliquées. Or les réels ne peuvent en général pas être représentés de manière exacte par des nombres flottants. La précision finie de l’arithmétique à virgule flottante conduit à des erreurs d’arrondi qui peuvent s’accumuler. Avec l’augmentation de la puissance de calcul, la complexification des algorithmes et le couplage d’applications, il est crucial de pouvoir quantifier la robustesse d’une application ou d’un algorithme.

Les outils CADNA [1], Verificarlo [2] et Verrou [3] permettent d’estimer la propagation d’erreurs d’arrondi et de mesurer la qualité numérique des résultats. L’objectif de ce travail est d’utiliser ces trois outils dans les applications GYSELA [4,5] (utilisée dans le domaine de la fusion pour caractériser la dynamique des turbulences dans le plasma des Tokamaks) et PATMOS [6] (mini-application représentative d’un code de transport neutronique Monte Carlo) afin d’analyser la robustesse numérique de ces applications ou de certains de leurs algorithmes. Outre l’analyse de la qualité numérique des résultats, ces outils seront aussi utilisés afin d’évaluer s’il est possible de dégrader la précision (simple ou demi-précision au lieu de double) pour certains algorithmes permettant des gains sur l’empreinte mémoire et/ou les performances (vectorisation, taille des communications). Au-delà des enseignements sur les deux codes analysés, un second objectif est la mise en place d’une méthodologie qui pourrait s’appliquer à d’autres codes de calcul tirant parti des complémentarités de ces trois outils.

Développements des outils multiphysiques dédiés à la modélisation des réacteurs RNR-Na et études associées.

Le groupe sodium du DM2S (département du CEA Saclay) développe des outils numériques de couplage afin de réaliser des études de cas accidentels (transitoires rapides). Les domaines physiques concernés sont la neutronique, la thermo-hydraulique et la mécanique. Le sujet de ce post-doc s’inscrit dans ce cadre.
Il s’agit de mener plusieurs travaux : l’intégration d’un couplage au sein de la plateforme CORPUS, réaliser des études dans le but de tester les effets et introduire dans le couplage l’impact, sur l’écoulement du sodium, de la déformation des assemblages par la température, l’utilisation des sections efficaces neutroniques générées par le code APOLLO3, l’étude d’autres cas accidentels, et étendre la modélisation à l’échelle sous-canal et aiguille.

Développement d’un framework de calcul dédié à la réduction de modèles par la méthode des bases réduites certifiées.

De nombreux domaines de l’ingénierie requièrent de pouvoir résoudre numériquement des équations aux dérivées partielles (EDP) modélisant des phénomènes physiques.

Lorsque nous nous intéressons à un modèle mathématique qui décrit le comportement physique d’un système en s’appuyant sur une ou plusieurs EDPs paramétrées (paramètres géométriques ou physiques), il peut être souhaitable de pouvoir évaluer rapidement et de manière fiable la sortie du modèle (quantité d’intérêt) pour différentes valeurs des paramètres.
Le contexte temps-réel, nécessaire pour faire du contrôle commande, ainsi que les contextes demandant beaucoup d’évaluations des sorties du modèle (typiquement pour des méthodes d’optimisation ou d’analyse d’incertitudes et de sensibilité) s’y prêtent parfaitement.

La méthode des bases réduites est une méthode de réduction de modèle dite intrusive car, à la différence des méthodes de type non-intrusives, la réduction est basée sur la projection des opérateurs des EDPs du modèle physique.
Cette méthode permet d’obtenir de manière rapide, pour un ensemble de valeurs de paramètres donné, une approximation de l’évaluation de la sortie du modèle.
Un des points forts de la méthode est l’aspect "certifié" qui permet d’estimer l’erreur d’approximation de l’évaluation de la sortie du modèle.

L’objectif du post-doctorat est de développer un framework de calcul pour la méthode des bases réduites certifiées. Ce framework devra être basé sur la plateforme TRUST (https://sourceforge.net/projects/trust-platform/) développée au CEA et devra être suffisamment générique pour permettre de traiter différents types de problèmes (linéaires ou non, stationnaires ou non, coercifs ou non...).
Le framework devra pouvoir être utilisé dans le cas d’un modèle de mélange de deux fluides.

Simulation des matériaux par dynamique d’amas

Les alliages utilisés dans les applications nucléaires subissent une irradiation aux neutrons, laquelle introduit un grand nombre de défauts lacunaires et interstitiels. Au cours du temps, ces défauts migrent, se recombinent et s’agglomèrent pour former des amas. Ce phénomène physique affecte les propriétés mécaniques des aciers et conduit à sa fragilisation. Dans ce contexte, il est important de pouvoir simuler l’évolution de la microstructure à l’aide de la méthode de dynamique d’amas. Malheureusement, cette méthode devient inefficace lorsque plusieurs éléments d’alliage doivent être pris en compte. La difficulté provient du nombre trop élevé de variables de simulation à gérer. Le projet a pour objectif d’optimiser l’efficacité du code sur une architecture parallèle distribuée en faisant appel à des fonctions dédiées, vectorielles et matricielles, de la bibliothèque SUNDIALS. Cette librairie est utilisée pour intégrer l’équation différentielle ordinaire décrivant les réactions entre amas. Un autre aspect du travail, plus théorique, consistera à reformuler le problème non-linéaire de recherche de zéros du schéma d’intégration en tirant profit de la réversibilité des réactions chimiques. Cette propriété doit permettre la mise en oeuvre de solveurs directs et itératifs pour matrices creuses, symétriques et définies positives. Un axe de recheche explorera la combinaison des approches directs et itératives, en utilisant une méthode de factorisation multi-frontale de type Cholesky pour préconditionner des itérations de gradient conjugué.

Développement de nouvelles molécules extractantes pour la séparation de l’uranium et du plutonium

Le sujet de post-doctorat proposé s’inscrit dans le cadre de l’optimisation du procédé de séparation de l’uranium et du plutonium à partir des combustibles nucléaires usés. Le procédé PUREX actuellement en fonctionnement à l’usine de La Hague met en œuvre un système extractant à base de TBP (tri-n-butylphosphate). Cette molécule extractante possède une forte affinité pour le plutonium et l’uranium aux états d’oxydation IV et VI et permet d’atteindre des facteurs de décontamination élevés vis-à-vis des produits de fission. Cependant la séparation des flux U et Pu nécessite l’utilisation d’agents réducteurs et de réactifs anti-nitreux pour désextraire sélectivement le plutonium au degré d’oxydation +III. Dans le but d’améliorer ce procédé, des recherches sont en cours pour développer de nouvelles molécules extractantes qui permettraient de séparer l’uranium et le plutonium sans chimie redox et avec une sélectivité élevée vis-à-vis des produits de fission (Ru, Tc, Cs, lanthanides, etc) et des autres actinides (le Np en particulier). Le travail du post-doctorant consistera tout d’abord à sélectionner les molécules puis déterminer la faisabilité de leur synthèse et proposer des voies d’obtention. Les composés cibles seront ensuite synthétisés, purifiés et caractérisés grâce aux équipements accessibles au laboratoire LCPE (micro-ondes, chromatographie flash, RMN, HPLC-MS, GC-HRMS) sur le site du CEA Marcoule.

Stratégie d’identification de modèles continus à partir d’une approche discrète 3D

Afin de développer une stratégie d’identification de modèles de comportements pour matériaux quasi-fragiles, adaptés au calcul de structure, très souvent réalisée arbitrairement, un modèle fondé sur la méthode des éléments discrets a été élaboré. Le modèle discret est utilisé pour compenser le manque de données expérimentales nécessaires à l’identification du modèle continu. Grâce à certaines prédispositions vis-à-vis du mécanisme de fissuration, la mise en oeuvre d’un modèle discret est extrêment aisée, et son efficacité a été démontrée, mais se limite pour le moment à un cadre 2D, pour des raisons liées au temps de calculs.

Un cadre 2D, réduit fortement les possibilités d’analyses pouvant être conduites avec un tel modèle, notamment pour des structures renforcées, où les effets 3D sont prépondérents. L’objectif des travaux proposés dans le cadre de ce travail post-doctoral est donc d’étendre en 3D l’approche discrète initialement développée. Les développements se feront dans le code de calcul CAST3M-CEA développé au DEN/DANS/DM2S/SEMT. Le code de calcul discret sera, par la même occasion, optimisé à l’aide d’outils déjà présents dans l’environnement CAST3M-CEA. En fonction des gains en efficacité, le calcul de structures complètes par la méthode des éléments discrets pourra être envisagée.

A l’issue de ce travail, un outil numérique sera disponible permettant d’étendre la stratégie d’identification à des modèles de comportement intégrant des effets 3D, tels que les modèles d’interface acier/béton (confinement) et de béton (dilatance).

Optimisation d’outils microfluidiques pour la mesure de données cinétiques

La mise au point et la modélisation des procédés chimiques nécessitent l’acquisition de nombreuses données thermodynamiques et cinétiques. Les méthodes conventionnelles de mesure de ces données de base mettent généralement en œuvre des quantités non négligeables de réactifs. En particulier pour les procédés de précipitation, où le caractére stochastique de la nucléation nécessite la réalisation d’un grand nombre d’expériences. Le sujet proposé consiste à poursuivre les travaux déjà réalisés sur la concetpion d’une puce dédiée à la mesure de cinétiques de nucléation rapide. Dans un premier temps, la validité des données obtenues par la technique microfluidique sera évaluée et optimisée sur la base de systèmes chimiques connus et non-radioactifs. L’outil microfluidique sera ensuite mis à profit pour étudier la sensibilité de ces réactions à différents paramètres opératoires (sursaturation, impuretés, additifs, etc.) avant d’envisager sa transposition aux procédés de l’industrie nucléaire, tels que la décontamination d’effluents radioactifs. Enfin, un nouveau design de puce pourra être proposé pour la mesure de cinétique d’extraction liquide-liquide, en lien avec le développement de nouveaux procédés hydrométallurgiques.

Développement d’une FXL miniature pour l’analyse en ligne: application au suivi de procédés.

Le dosage par spectrométrie de fluorescence X (FXL et FXK) est une des techniques utilisées dans l’industrie pour l’analyse chimique des éléments en solution. De façon simplifiée, cette technique est basée sur la mesure des rayonnements X caractéristiques qui sont émis par les atomes réarrangeant leur cortège électronique suite à une excitation extérieure. C’est donc une méthode de mesure non destructive volumique qui permet de doser les éléments chimiques. Des travaux conduits au CEA dans les années 90 ont montré qu’il était possible de doser avec ces techniques des éléments lourds (U, Pu, Am, Np, Cm, Pb) via les raies X de la couche L mais aussi de certains éléments plus légers (Zr, Mo, ou le Sr) via les raies X de la couche K. Ces techniques ont permis d’obtenir des limites de détection appréciables (qqes mg/l) et ont été déployées industriellement sur certaines lignes de l’usine de la Hague. Cependant leur exploitation nécessitait des équipements lourds et encombrants, avec en particulier des détecteurs refroidis à l’azote liquide et des tubes générateurs de RX de grandes dimensions.
Aujourd’hui, ces technologies ont considérablement évolué sur deux points névralgiques: les sources de rayonnements X, qui se sont miniaturisées et les détecteurs avec l’apparition de nouveaux semi-conducteurs de petits volumes fonctionnant à température ambiante avec une résolution acceptable (Ex : Cristaux de Tellure de Cadmium)
Ces évolutions nous ont amené à relancer des actions de R&D sur la spectrométrie FXL. Le sujet proposé s’intègre dans cette démarche. Il s’agit dans les grandes lignes de dimensionner et évaluer un procédé de dosage par fluorescence X basé sur ces nouvelles technologies. Les applications envisagées sont de deux types : le suivi en ligne des procédés dans les usines de recyclage et le soutien aux projets d’assainissement-démantèlement et de remédiation des sites pollués.

Modélisation multi-Echelle de la Ségrégation Induite par iRradiation

L’irradiation crée dans les matériaux un excès de lacunes et d‘auto-interstitiels, qui s’éliminent en se recombinant ou en s’annihilant sur les défauts étendus (surfaces, joints de grains, dislocations). Elle maintient ainsi des flux de défauts ponctuels vers ces puits. Dans le cas d’un transport préférentiel d’un des composants d’un alliage, une variation de la composition chimique apparaît à proximité des puits: c’est la Ségrégation Induite sous Irradiation (SII). Sa modélisation nécessite une bonne description des propriétés de l’alliage: ses forces motrices (dérivées de la thermodynamique) et ses coefficients cinétiques (constantes d’Onsager). L’objectif de ce projet est de combiner (i) des modèles atomiques (simulations Monte Carlo et champ moyen autocohérent), ajustés sur des calculs ab initio et qui permettent d’accéder aux coefficients d’Onsager et aux forces motrices et (ii) la modélisation de type champs de phases qui permettra de décrire la cinétique sous irradiation à des échelles de temps et d’espace supérieures. On appliquera la méthode aux systèmes FeCu et FeCr, déjà modélisés à l’échelle atomique. La SII sera modélisée à proximité d’un joint de grains, puis à proximité d’une boucle de dislocations. On s’intéressera plus particulièrement à l’influence de la contrainte sur le phénomène.

Développement de méthodes de quantification de l’U dans des cellules exposées à l’uranium

Ce projet s’intègre dans le programme transversal TOXICOLOGIE, mené par le CEA, dont la vocation est d’aborder par des approches pluridisciplinaires les effets potentiels sur le Vivant d’éléments d’intérêt stratégique pour le CEA. L’objectif est d’aider à la compréhension des mécanismes de toxicité et du comportement de l’uranium, en cohérence avec sa spéciation dans des cellules en culture. En effet, la spéciation des éléments gouverne leur biodisponibilité, leur accumulation, leur biodistribution, leur toxicité, leur détoxification et leurs mécanismes d’interaction au niveau moléculaire.
Le sujet de ce stage post doctoral (12 mois) consistera à :
- Mettre au point des méthodes de quantification de l’U accumulé dans les cellules ainsi que des teneurs d’éléments traces endogènes après exposition des cellules à de l’uranium.
- Développer des méthodes de détermination de la composition isotopique précise de l’U dans les cellules après exposition.
Le candidat sera en charge de développer des méthodes de purification chimique et de mesure pour les analyses élémentaires et isotopiques précises. Les analyses seront réalisées à l’aide de spectromètres de masse à source à plasma inductif quadripolaire (ICP-MS Q) ou multi-collection de dernière génération (ICP-MS MC), afin d’atteindre des incertitudes les plus faibles possibles.

Top