Etude du transfert d’aérosols au travers de matériaux dégradés

Pour certaines familles de colis de déchets radioactifs, des liants hydrauliques sont utilisés pour établir une barrière confinante entre le cœur des colis de déchets et l’environnement. Les études de sûreté étudient des scénarios accidentels extrêmes pour cette phase (chutes, incendies …) qui peuvent conduire à une altération de la barrière confinante sous forme de fissurations. Il est alors important d’étudier la capacité de rétention de ces fissures vis-à-vis des particules radioactives.
Des études expérimentales ont été initiées avec la thèse d’A. Boccheciampe qui a étudié le cortège de particule (40µm) dans des fissures modèles artificielles (créés à l’imprimante 3D) par mesures microtomographie-3D.
L’objectif post-doctoral est de poursuivre cette thématique avec une approche identique à celles développées sur les études d’efficacité de filtres, afin d’investiguer les particules de diamètre plus faible, entre 0,05 et 5 µm. Les études quantitatives seront ainsi portées sur les flux amont et aval de particules de part et d’autre d’éprouvettes fissurées/dégradées, avec générateur d’aérosol, compteur granulomètre optique et analyseur U-SMPS. Des travaux de modélisation devront être entrepris.

Modélisation de la cinétique des amas de défauts interstitiels dans les métaux CC après l’implantation d’hélium.

Les matériaux de structure des réacteurs nucléaires subissent des conditions d’irradiation sévères qui peuvent modifier leurs propriétés mécaniques. Afin de pouvoir suivre la cinétique atomique qui mène à des structures complexes responsables du vieillissement de matériaux, il faut se tourner vers la simulation numérique. Dans le cadre de l’ANR EPIGRAPH nous allons combiner les techniques expérimentales et les calculs numériques pour mieux caractériser la cinétique des défauts interstitiels dans les métaux cubiques centrés. Nous avons récemment proposé une nouvelle structure tridimensionnelle périodique pour les amas d’interstitiels dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Afin de détecter ces amas expérimentalement, une idée est de les faire grandir après implantation d’hélium [2]. Cette démarche sera réalisée dans divers métaux CC dans le cadre du projet ANR EPIGRAPH, en collaboration avec Chimie ParisTech, GEMaC et LPS.
Dans ce projet, la tâche de modélisation comporte deux directions:
- Les calculs ab-initio, effectués par le postdoc, vont apporter les informations atomistiques sur la croissance des défauts d’irradiation.
- Les résultats des calculs ab-initio seront ensuite utilisés pour paramétrer un modèle cinétique basée sur la dynamique d’amas [3]. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts sur de temps longs.
Le travail de modélisation sera réalisé en étroite collaboration avec la partie expérimentale.
[1] M. C. Marinica, F. Willaime, J.-P. Crocombette, Phys. Rev. Lett. 108 (2012) 025501
[2] S. Moll, T. Jourdan, H. Lefaix-Jeuland, Phys. Rev. Lett. 111 (2013) 015503
[3] T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444 (2014)

Synthèse et caractérisation de ligands amino-phosphorés pour l’extraction de l’uranium en milieu sulfurique par un procédé « liquide/liquide »

Le développement de nouveaux extractants plus performants que ceux actuellement utilisés constitue donc un enjeu important pour l’industrie minière de l’uranium. En particulier, l’accès à des systèmes chélatants particulièrement affins de l’uranium tout en étant plus sélectifs vis-à-vis des ions compétiteurs et moins sensibles à l’hydrolyse reste un défi à relever.
Récemment, de nouvelles molécules bifonctionnelles du type amio-oxyde de phosphine ont démontré leur utilité pour l’extraction de l’uranyle des milieux sulfuriques avec d’excellentes propriétés en termes d’affinité et de sélectivité pour le métal.
L’objectif de ce stage postdoctoral sera d’optimiser cette famille de ligands, par la mise au point de voies de synthèses rapides, efficaces et adaptées à la préparation de quantités suffisantes d’extractant pour des études approfondies visant à optimiser le procédé

Post-doc : réseau de neurones CNN - gestion des incertitudes dans la base de données d'apprentissage

L'objectif de ce postdoc est de développer un algorithme pour prendre en compte les incertitudes des données de la base d'apprentissage d'un réseau de neurones. Ce travail s'inscrit dans le contexte d'un projet d'estimation dynamique de l'état d'un procédé d'extraction liquide-liquide. En utilisant un simulateur qualifié du procédé et des mesures de suivi lors de son exploitation, il est possible d'estimer les paramètres opératoires et connaitre ainsi l'état du procédé. Cependant ces mesures sont entachées d'incertitudes et il est nécessaire de réconcilier les données pour obtenir le meilleur jeu de données à fournir au simulateur. Un réseau de neurone convolutifs (CNN) permettant d'inverser le simulateur est en développement (à partir des sorties mesurées, on peut être capable d'estimer les entrées à fournir au simulateur). L'objectif est d'évaluer l'impact des incertitudes de mesure sur la construction de ce réseau de neurones. La première étape sera de propager les incertitudes des mesures d'entrée à travers le simulateur à l'aide de la plateforme Uranie, développée par le CEA ISAS. Cette connaissance sera alors intégrée dans la boucle d'apprentissage du réseau de neurones. L'impact de ces incertitudes sur les résultats du réseau de neurones doit être évalué pour fiabiliser l'estimation de l'état du procédé par le réseau de neurones. A travers ce projet, nous sommes au cœur de la thématique du contrôle de procédés complexes par la simulation.

Approche Multi-echelle de la modélisation de solutions aqueuses d’éléments f

Les procédés de séparation des éléments mis en œuvre lors du recyclage des métaux lourds utilisent communément l’extraction liquide-liquide où l’on fait passer sélectivement des ions d’une phase aqueuse concentrée à une phase organique organisée. Ce stage post-doctoral concerne la physico-chimie de ces procédés, et plus particulièrement l ‘étude de la partie aqueuse, par une modélisation théorique aussi complète que possible.
Le but est de comprendre comment les différents effets (solvatation, forces électrostatiques, forces de Van der Waals, entropie) régissent les propriétés structurales et énergétiques de ces solutions. Une approche multi-échelle sera mise en œuvre pour des systèmes intéressants tant du point de vue fondamental que pour leur application directe dans des procédés industriels. Des méthodes modernes de modélisation (chimie quantique, simulations de dynamique moléculaire, théories des solutions) seront utilisées afin de caractériser ces systèmes à plusieurs échelles allant du moléculaire jusqu’aux propriétés thermodynamiques. Les outils utilisés, et la démarche qui sera mise en place pourront être étendus à la chimie séparative de façon générale.

Modélisation de l’évolution des amas d’interstitiels dans les métaux de structure cubique centrée après implantation d’hélium

Sous irradiation, les matériaux de structure des centrales nucléaires subissent une évolution de leurs propriétés mécaniques. Ces modifications résultent de la formation d’amas de défauts ponctuels tels que les cavités et les boucles de dislocation interstitielles. Comprendre les processus de formation de tels amas est donc un enjeu important pour la prédiction des propriétés des matériaux sous irradiation. Récemment, il a été montré par la théorie que des amas tridimensionnels, appelés amas C15, sont très stables dans le fer. Afin de détecter expérimentalement de tels amas, il est envisageable de les faire croître, comme cela a été fait pour les boucles de dislocation après implantation d’hélium. Cette approche sera menée expérimentalement dans différents métaux cubiques centrés dans le cadre de l’ANR EpigRAPH, en collaboration avec Chimie Paris Tech, le GEMaC et le LPS.

Dans ce projet, les tâches suivantes de modélisation seront effectuées par le post-doc :
- Des calculs de structure électronique seront réalisés de manière à obtenir les propriétés énergétiques des défauts ponctuels et de leurs amas dans les métaux cubiques centrés envisagés dans le projet
- Ces données seront ensuite utilisées pour paramétrer un modèle cinétique de type dynamique d’amas. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts ponctuels sur des temps longs.

Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée

Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.

Etudes sur la physique des gaz et des interactions matière/laser pour la démonstration à l’échelle laboratoire de l’épuration isotopique du palladium (naturel).

Le palladium est un métal rare dont la demande mondiale est en forte augmentation. Or, il est présent en tant que produit de fission dans les combustibles nucléaires usés qui sont retraités en France. Il serait donc intéressant de recycler ce métal. Pour cela, il est nécessaire de procéder à une épuration isotopique, afin de supprimer un des isotopes du palladium, le 107, qui est un radionucléide artificiel à vie longue émetteur béta. Dans le cadre d'un nouveau projet sur 4 ans construit en réponse à l'appel d'offre du Plan d'Investissement et d'Avenir de l’État, le Service d’Etude des Procédés d’Enrichissement propose un contrat post-doctoral ayant pour objectif la compréhension des interactions gaz/laser dans le procédé de séparation isotopique du palladium par Lasers actuellement en cours de développement. L’objectif principal du projet est la démonstration finale de la faisabilité de séparation de palladium naturel (et non radioactif) pour la phase suivante de développement d’un premier pilote.
Le post-doctorant devra en particulier assurer l’étude du mode de production de la vapeur atomique près du point de fusion du métal pur, des mesures de spectroscopie par laser dans l’UV afin d’affiner les séquences sélectives de photoionisation des isotopes désirés. Pour ce faire, il participera à la définition, au montage et au développement de l'évaporateur, et au couplage des lasers du procédé avec l’enceinte à vide. Des échanges seront mis en place sur ce sujet spécifique avec des spécialistes reconnus au sein de la Direction de la Recherche Fondamentale du CEA. Les mesures de diagnostics des lasers mais aussi les mesures provenant des interactions gaz/laser sont à développer. La programmation (en Python et/ou sous Labview) de ces outils est un point essentiel du poste proposé. Une attention particulière sera portée sur les publications à réaliser essentiellement dans le cadre des interactions gaz/laser (photoionisation sélective des atomes d’intérêt et extraction).

Procédé DEM’N’MELT : Optimisation des conditions de fonctionnement par modélisation

Dans le cadre du projet PROVIDENCE (Plan Relance, France), le procédé DEM'N'MELT a été développé dans le but de proposer et de commercialiser une solution de traitement et de conditionnement de déchets de haute et moyenne activité aux opérateurs de sites en démantèlement ou en remédiation, en France et à l’étranger. Dans ce cadre, des études d'optimisation de fonctionnement du procédé ont été entreprises.
Le candidat devra prendre en main les logiciels utilisés (Fluent, Workbench, SpaceClaim, Meshing), pour s’approprier les modèles existants. Les modèles devront évoluer pour :
o prendre en compte des points de mesure supplémentaires pour calibrer le modèle
o étudier la sensibilité du système aux propriétés physiques du verre
o optimiser la conduite du four et gérer la capacité d’alimentation en fonction du niveau de remplissage
o ajouter une agitation du bain de verre.

Le candidat pourra d’appuyer sur les compétences du Laboratoire LDPV, à la fois expérimentalement et en modélisation.

Chercheur en intelligence artificielle appliquée à la microfluidique autonome

Cette offre de postdoctorat fait partie du projet 2FAST (Fédération de Laboratoires Fluidiques Autonomes pour Accélérer la Conception de Matériaux) du PEPR DIADEM, qui vise à automatiser complètement la synthèse et la caractérisation en ligne de matériaux à l’aide de puces microfluidiques « orchestrées ». Ces techniques offrent un contrôle précis et tirent parti des avancées numériques pour améliorer les résultats de la chimie des matériaux. Cependant, la caractérisation complète des nano/micro-matériaux à cette échelle reste un défi en raison de son coût et de sa complexité. 2FAST ambitionne d’exploiter les progrès récents dans l'automatisation et de l'instrumentation des plateformes microfluidiques, afin de développer des puces microfluidiques interopérables et automatiquement pilotées permettant une synthèse contrôlée de nanomatériaux. Plus précisément, l'objectif est d'établir une preuve de concept pour une plateforme de réacteur microfluidique/millifluidique à haut débit pour la production continue de nanoparticules de métaux nobles. Des boucles de rétroaction gérées par des outils d’intelligence artificielle contrôleront la progression de la réaction à partir d’informations acquises en ligne par des techniques spectrométriques (UV-Vis, SAXS, Raman). Le postdoctorat proposé porte sur l’ensemble des travaux en intelligence artificielle associés à ces développements, à savoir : i) la conception de boucles de rétroaction, ii) la création d'une base de données de signaux adaptés à l'apprentissage automatique, iii) la mise en œuvre de méthodes d'apprentissage automatique pour connecter les différentes données et/ou piloter les dispositifs microfluidiques autonomes.

Top