Caractérisation d'écoulements réactionnels sur hydrures de palladium

Le stockage et la mise en œuvre des isotopes de l'hydrogène est une brique technologique cruciale au développement de la fusion thermonucléaires contrôlée. A ce titre, le palladium, matériau de référence pour le stockage d'hydrogène, permet d'étudier en amont les phénomènes physico-chimiques avant leur application industrielle. Le CEA dispose d'atouts majeurs concernant les technologies hydrogène (piles à combustible, stockage, électrolyse) et est acteur de référence de la recherche employant les isotopes de l'hydrogène (deutérium et tritium) pour des applications de fusion.
Le post-doctorat vise à étudier la dynamique d'écoulements réactionnels au sein d'une colonne contenant de la poudre de palladium et soumis à un flux gazeux d'hydrogène ou de deutérium. Cet écoulement réactionnel fait intervenir la cinétique des réactions solide/gaz, de la mécanique des fluides au sein d'un milieu granulaire, des phénomènes thermiques transitoires et nécessite une parfaite maitrise des conditions expérimentales et des instrumentations associées. Le laboratoire dispose de plusieurs bancs d'étude permettant de faire varier les paramètres d'intérêt (débits, pressions, températures, isotopie, granulométrie de la poudre, porosité du lit de palladium...) tout en étant couplé à des moyens d'analyse en ligne (sonde Raman) ou hors ligne (Mass Spectrometry, MS). Le couplage du banc d'étude avec un nouveau moyen d'analyse en ligne à haute résolution temporelle (HRMS) est un des objectifs majeurs de cette étude.

Soudage laser de matériaux hautement réfléchissants à l'échelle sub-millimétrique

Dans le cadre du programme "Simulation", le CEA réalise des expériences sur lasers de puissance mettant en œuvre des objets à forte valeur ajoutée. Ces objets, les microcibles, sont des assemblages complexes d'éléments variés, dont la fabrication requiert des procédés sophistiqués, à la limite de la rupture technologique. Parmi ces technologies, le CEA souhaite développer ses capacités de soudage par laser, à l'échelle sub-millimétrique. Un défi majeur réside dans le soudage de matériaux hautement réfléchissants (aluminium, cuivre, or,...), pour accéder à de nouvelles fonctionnalités (jonction métallurgique, étanchéité,....).

L'objectif de ce post-doctorat est de développer des solutions technologiques pour la réalisation d'assemblages soudés, et de comprendre l'interaction laser/matière associée. L'intérêt, mais aussi la difficulté, de l'étude réside dans les différents critères que doivent respecter les procédés : 1) être compatibles de matériaux hautement réfléchissants et de très faibles épaisseurs (< 0,2 mm) , 2) induire des effets collatéraux (thermiques notamment) extrêmement localisés, 3) fonctionnaliser le joint soudé (étanchéité par exemple).
Le postdoctorant(e) exploitera la dernière génération de source laser émettant dans des longueurs d'onde visibles (vert, bleu). Il/elle participera à la conception et aux tests de qualification de la station laser associée à cette nouvelle source. Après validation, il/elle réalisera l'étude de la soudabilité opératoire et métallurgique des sous-éléments. Il/elle comparera ses résultats avec l'utilisation d'un laser infrarouge impulsionnel. Il/elle expertisera les joints obtenus à l'aide de différentes approches et optimisera la conception des joints soudés. Son étude expérimentale ira jusqu'à la réalisation de tests fonctionnels sur prototypes. Des collaborations externes seront mises en place afin de confronter les résultats obtenus à des simulations afin d'en déduire un modèle phénoménologique.

Top