Modélisation des réseaux de qubits silicium-sur-isolant
Un post-doctorat est ouvert à l’Institut de Recherche Interdisciplinaire de Grenoble (IRIG, anciennement INAC) du CEA Grenoble (France) sur la théorie et la modélisation des réseaux de bits quantiques silicium-sur-isolant (qubits SOI). Cette position s’inscrit dans le cadre du projet ERC Synergy qucube, visant à développer des réseaux bidimensionnels de tels qubits. Le (la) candidat(e) sélectionné(e) devra commencer entre octobre et décembre 2019, pour une période maximale de trois ans.
De nombreux aspects de la physique des qubits silicium sont encore mal compris, de sorte qu’il est essentiel de soutenir l’activité expérimentale avec de la modélisation avancée. À cette fin, le CEA développe activement le code "TB_Sim". TB_Sim est basé sur une description k.p multi-bandes ou liaisons fortes atomistiques de la structure électronique des matériaux et comprend notamment un solveur en interaction de configurations dépendent du temps pour la dynamique des qubits.
Les objectifs de ce post-doctorat sont d’améliorer la compréhension de la physique de ces dispositifs et d’optimiser leurs design, et en particulier:
- de modéliser la manipulation, la lecture et la décohérence des spins dans les réseaux 1D et 2D de qubits SOI.
- de modéliser les interactions d’échange dans ces réseaux et d’évaluer le fonctionnement de portes multi-qubits.
Le (la) candidat(e) aura l’occasion d’interagir avec les équipes expérimentales du CEA/IRIG, du CEA/LETI et du CNRS/Néel impliquées dans quCube, et aura accès à des données sur des dispositifs à l’état de l’art.
Spectroscopie de centres colorés de l’AlN
L’étude de l’émission optique de centres profonds dans les semiconducteurs est devenu un sujet important dans le cadre général du traitement quantique de l’information et des nano-capteurs, l’émetteur le plus étudié étant le centre N-V du diamant. Récemment, le potentiel de défauts dans de nouveaux matériaux a été évalué, par exemple dans le GaN et le BN. Par contre, le potentiel de l’AlN pour ces applications n’a encore que très peu été exploré, malgré les nombreux avantages que ce matériau présente : il peut être épitaxié, des substrats bulk de haute qualité sont disponibles, il peut être gravé pour former des microcavités de haute qualité optique.
Dans ce post-doc de 12 mois, nous proposons d’explorer les propriétés optiques de centres profonds dans l’AlN. Nous étudierons en particulier par microphotoluminescence et luminescence résolue en temps différents types d’AlN : couches minces d’AlN sur silicium, couches plus épaisses d’AlN sur saphir, des ensembles de nanofils et des nanofils uniques.
Composites nano-silicium/graphène pour batteries lithium-ion à haute densité d’énergie
Le sujet s’inscrit dans un projet H2020 inclus dans le Core 2 du Flagship Graphene (2018-2020), portant sur les applications du graphène dans le stockage de l’énergie. Pour les batteries Li-ion, le graphène est associé en composite avec du silicium nano-structuré pour augmenter la capacité énergétique. Le graphène enrobe le silicium, réduisant sa réactivité avec l’électrolyte et la formation de la couche de passivation (SEI), et maintient une conductivité électrique élevée dans l’électrode.
L’étude porte sur 2 technologies : l’optimisation de composites graphène-nanoparticules de Si déjà explorés dans ce projet, et la mise au point de composites inédits graphène-nanofils de Si pour comparaison. Elle sera menée dans deux laboratoires du CEA en étroite collaboration : au LITEN (recherche technologique) spécialisé dans les batteries pour le transport, et à l’INAC (recherche fondamentale) spécialisé dans la synthèse de nanomatériaux.
Le/la postdoc fera la synthèse des nanofils de Si pour ses composites par le procédé de croissance en masse récemment breveté à l’INAC. Elle/il sera en charge de la formulation des composites selon le savoir-faire du LITEN et de leur mise en œuvre en pile bouton pour tests en cyclage. Il/elle mènera une comparaison systématique du comportement électrochimique des deux types de composites à base de nanoparticules et de nanofils. La comparaison s’appuiera sur une étude du mécanisme de perte progressive de capacité et de formation de la SEI grâce aux outils de caractérisation disponibles au CEA Grenoble et dans le consortium du projet : diffraction X, microscopie électronique, spectroscopies XPS, FTIR, RMN. Elle/il participera aux travaux du consortium international (Cambridge UK, Gênes Italie, Graz Autriche).
Le contrat postdoctoral est attribué pour 2 ans.
On recherche un docteur en sciences des matériaux avec expérience en nanocaractérisation, nanochimie et/ou électrochimie.
Les candidatures sont attendues avant le 31 mai 2018.
Etude in situ à l’aide du rayonnement synchrotron de la croissance de graphène sur catalyseur métal liquide
The postdoctoral research project is part of a four-year European FET-Open project called LMCat (http://lmcat.eu/) bringing together five European labs, including the ESRF and the CEA-INAC, to develop the growth of defect-free two-dimensional materials by liquid-metal catalytic routes. A central lab will be established at the ESRF to develop an instrumentation/methodology capable of studying the ongoing chemical reactions on the molten catalyst. The growth by chemical vapor deposition at high pressure and temperatures will be characterized in situ, by means of two main techniques: Raman and X-ray scattering (Grazing Incidence X-Ray Scattering and Reflectivity). It will be complemented by theoretical calculations performed in Munich. The successful candidate will be in charge; together with a PhD student, of the in situ synchrotron X-ray scattering measurements, using the ESRF ID10 liquid scattering beamline (http://www.esrf.eu/UsersAndScience/Experiments/CBS/ID10) and the P08 beamline of PETRA-III (photon-science.desy.de/facilities/petra_iii/beamlines/p08_highres_diffraction/index_eng.html), in Desy.
You should hold a PhD in physics, chemistry or material science or closely related science. Previous experience of complex instrumental environment, MBE or CVD growth methods and / or with synchrotron X-ray scattering / diffraction / reflectivity, especially on liquids, will be an advantage. You should be motivated to work with an international team of young researchers with an experimental setup at the forefront of instrumental development, and ready to travel in Germany (Hambourg) for extended periods to perform some of the experiments. A good practice of English is mandatory. You should also have:
This is a full time, 3 year contract.
Please submit a 1 page cover letter stating the motivation, research experience and goals, ; a curriculum vitae, and contact information for 3 references.
Modélisation des bits quantiques silicium-sur-isolant
Les technologies de l’information quantique ont suscité beaucoup d’intérêt ces dernières années. Le CEA développe sa propre plate-forme originale basée sur la technologie "silicium-sur-isolant" (SOI). L’information quantique est stockée dans le spin des porteurs piégés dans des boîtes quantiques gravées dans un fin film de silicium et contrôlées par des grilles métalliques. Le SOI a de nombreux atouts: la gravure du film de silicium permet de produire des boîtes plus petites, donc plus denses; en outre, l’utilisation du substrat SOI comme grille "arrière" permet d’accroître le contrôle des bits quantiques (qubits).
De nombreux aspects de la physique de ces qubits restent mal compris. Il est donc essentiel de soutenir l’activité expérimentale avec une modélisation adaptée. Dans ce but, le CEA développe activement le code "TB_Sim". Les buts de ce projet post-doctoral de 2 ans sont de modéliser la manipulation et la lecture du spin dans les qubits SOI, et de modéliser la décohérence et la relaxation à l’échelle atomique en utilisant le code TB_Sim. Ce travail de modélisation sera étroitement couplé à l’activité expérimentale à Grenoble. Le ou la candidat(e) aura accès à des données expérimentales sur des dispositifs à l’état de l’art.