Recyclage de plastics par l'extraction d'additifs toxiques par solvents verts
Il est important de développer les connaissances scientifiques et de stimuler les innovations en matière de recyclage des plastiques. La très grande variété d'objets en plastique que nous utilisons dans notre vie quotidienne est constituée d'un large éventail de matériaux plastiques couvrant de nombreux polymères différents, de nombreuses formulations différentes. Les objets en plastique sont également utilisés à de nombreuses fins et il est donc nécessaire de disposer de différents moyens pour les collecter, les trier et les traiter.
Les méthodes de recyclage des plastiques sont généralement divisées en quatre catégories : primaire, secondaire, tertiaire et qua-ternaire (voir figure 9). On parle de recyclage primaire ou de méthode de recyclage en circuit fermé lorsque les matériaux après recyclage présentent des propriétés égales ou améliorées par rapport aux matériaux initiaux ou vierges. Lorsque les produits recyclés présentent une diminution de leurs propriétés, on peut s'inquiéter de la méthode de recyclage secondaire ou de la méthode de recyclage en aval. Dans la méthode de recyclage tertiaire (également connue sous le nom de recyclage chimique ou de recyclage des matières premières), le flux de déchets est converti en monomères ou en produits chimiques qui peuvent être avantageusement utilisés dans les industries chimiques. Enfin, la méthode de recyclage quaternaire (également connue sous le nom de recyclage thermique, de récupération d'énergie et d'énergie à partir des déchets) correspond à la récupération des plastiques sous forme d'énergie et n'est pas considérée comme un recyclage dans le cadre de l'économie circulaire.
Divers procédés peuvent être envisagés pour le recyclage chimique, qui présentent différents niveaux de maturité. D'où ce projet qui étudiera la décontamination de diverses formulations de PVC à l'aide de solvants verts, et plus particulièrement le CO2 supercritique.
Intelligence artificielle appliquée à l’analyse par faisceaux d’ions
Un contrat post-doctoral d’une durée d’un an est proposé conjointement par le laboratoire d’étude des éléments légers (LEEL, CEA/DRF) et le laboratoire de Sciences des Données et de la Décision (LS2D, DRT/LIST) et porte sur un développement logiciel dédié au traitement de données multispectrales basé sur des outils d’Intelligence Artificielle (IA) et plus particulièrement de machine learning, qui seront appliqués ici à l’analyse par faisceaux d’ions (Ion Beam Analysis : IBA).
Dans le cadre de ce projet, le candidat retenu aura à réaliser les tâches suivantes :
1- Conception d’un dictionnaire multi-spectral.
2- Apprentissage.
3- Ecriture du code principal.
4- Développement d’un module d’analyse de cartographies multispectrales.
5- Benchmarking.
Le post-doctorant sera accueilli et encadré au sein des laboratoires LEEL et LS2D.
Electrodes négatives nanostructurées pour batteries magnésium-ion
Le sujet s’inscrit dans un projet ANR portant sur le développement d’électrodes négatives pour les accumulateurs électrochimiques magnésium (Mg)-ion. Le magnésium apparaît comme une excellente alternative au lithium en raison de sa forte capacité spécifique, son faible coût, son abondance sur Terre et sa faible réactivité. Cependant, les électrolytes conventionnels interagissent fortement avec le magnésium métallique pour former une couche de surface bloquante à la surface du Mg métallique, inhibant les réactions électrochimiques réversibles. Une solution intéressante pour pallier à ce problème est le remplacement de l’électrode en Mg métallique par un matériau compatible avec des solvants et solutions électrolytiques présentant de larges fenêtres de stabilité électrochimique. Les composés d’alliages avec le Mg possèdent une stabilité appropriée dans les électrolytes classiques, des potentiels légèrement plus élevés que le Mg métallique pur mais des capacités spécifiques plus faibles. Dans le cadre d’un projet ANR, le laboratoire LEEL développe de nouveaux composés d’alliage pour ces batteries et cherche à les nanostructurer afin de résoudre les problèmes d’expansion volumique et de diffusion lente des ions lors de l’alliage avec le Mg.
Dans ce projet, le/la post-doctorant(e) sera en charge dans un premier temps de la compréhension fondamentale de la réactivité vis-à-vis des électrolytes des alliages développés au laboratoire via notamment des mesures par impédance et XPS. Dans un deuxième temps, il s’agira d’optimiser les formulations d’électrode et d’électrolyte via la comparaison systématique des performances en demi-cellule. Finalement, des cellules complètes Mg-ion seront réalisées avec les meilleurs couples électrode/électrolyte.