Etude et simulation des entraînements de phase dans les batteries de mélangeurs-décanteurs

Dans le cadre du développement de nouveaux procédés de séparation par extraction liquide-liquide, des essais expérimentaux sont mis en œuvre afin de démontrer la récupération des éléments valorisables suffisamment décontaminés des impuretés. Ces essais sont couramment réalisés en batteries de mélangeurs décanteurs. Cependant, en fonction des conditions opératoires, ces produits finis peuvent être contaminés par des impuretés. Cette contamination résulte de la combinaison de plusieurs facteurs :
-Hydrodynamique : Entrainement dans le solvant de gouttes aqueuses non décantées contenant des impuretés
-Chimique : le facteur de séparation des impuretés est faible (inférieur à 10-3)
-Procédé : l’entrainement des gouttes est amplifié avec l’augmentation de la cadence (réduction du temps de séjour des gouttes)
Cette thèse a pour but d’accroitre la compréhension des différents phénomènes responsables de ces entraînements de phase afin d’estimer des paramètres opératoires optimaux et de garantir une contamination des produits finis inférieure à un seuil fixé.
Il sera question de mettre au point un modèle macroscopique permettant de prédire le débit d’entrainement de gouttes non décantées en fonction des conditions opératoires dans les batteries de mélangeurs décanteurs. Il devra s’appuyer sur des simulations hydrodynamiques couplant la résolution d’un bilan de population de gouttes à un écoulement de phase continue. Un couplage sera réalisé entre ce modèle hydrodynamique et le code PAREX ou PAREX+ permettant de dimensionner les schémas de procédé.
La qualification des modèles proposés devra être faite par des comparaisons à des mesures expérimentales (basées sur des compagnes d’essai antérieures ou à venir).

Comportement redox du technetium dans le procédé innovant PUMAS: étude cinétique et spéciation

Le technétium (Tc), élément radioactif artificiel, constitue environ 6 % des produits de fission dans le combustible nucléaire usé. Le procédé PUREX permet de séparer l’uranium et le plutonium des autres produits de fission. Cependant, le Tc est co-extrait avec ces actinides, nécessitant une désextraction supplémentaire. Lors de cette étape, un agent stabilisant, le nitrate d’hydrazinium (NH), est utilisé, mais en raison de sa toxicité et de sa classification CMR, il est en cours de remplacement par des alternatives moins toxiques, telles que les oximes. Ces dernières, bien que prometteuses, présentent une cinétique de désextraction plus lente que le NH. Dans le cadre du procédé PUMAS, cette thèse vise à comprendre les mécanismes redox complexes du Tc et les différences de cinétique observées entre les oximes et le NH. Le doctorant étudiera les formes réduites du Tc et analysera les cinétiques de réduction en présence d’U(IV) et d’agents anti-nitreux. Il développera une méthodologie pour caractériser les états d'oxydation du Tc et déterminera les constantes de réaction en fonction de la température et de la concentration en réactifs.
Le candidat travaillera en étroite collaboration avec l’équipe encadrante afin de développer son autonomie, sa capacité d’adaptation, ainsi que son aptitude à proposer des idées innovantes. À l'issue de ce parcours, le candidat aura non seulement acquis des compétences techniques de haut niveau, mais aussi développé des aptitudes en gestion de projet, en travail collaboratif, ainsi qu’en rédaction et communication scientifique. Ces compétences lui offriront de solides perspectives pour une carrière dans la recherche académique ou au sein de l'industrie.

Dégradation radiolytique des N,N-dialkyl amides : Impact sur la spéciation des complexes

Les N,N-dialkylamides (ou monoamides) sont des molécules extractantes prometteuses pour le développement de nouveaux procédés de traitement des combustibles nucléaires usés. Lors de la mise en œuvre de ces procédés d’extraction liquide-liquide, ces molécules sont soumises aux phénomènes de radiolyse induits par la présence des rayonnements ionisants émis par les radioéléments. Cela entraine la formation d’espèces radicalaires ou moléculaires susceptibles de provoquer des ruptures ou modifications de liaisons chimiques conduisant à la formation de nouveaux composés. Ces changements dans la composition des solutions peuvent altérer les propriétés extractantes et provoquer des dysfonctionnements, notamment en termes d’efficacité et de sélectivité.
Cette thèse a pour but d’étudier l’impact de la radiolyse sur la spéciation des complexes actinides-ligands en solution afin d’améliorer la compréhension des phénomènes observés sous l’effet des rayonnements ionisants.
Nous proposons ici une approche combinant des études expérimentales (techniques chromatographiques, spectrométrie de masse, spectroscopies UV-visible, IR, RMN,…) et des calculs de chimie théorique (énergie de dissociation des liaisons, identification des sites probable d’attaques radicalaires, stabilité des complexes métal-ligands,…) pour décrire la spéciation moléculaire des espèces en solution, à la fois pour les composés organiques et pour les complexes formés entre ces composés et les cations métalliques d’intérêt. La sphère de coordination des cations métalliques engagés dans les complexes sera décrite le plus finement possible pour identifier les groupements fonctionnels impliqués dans la complexation et évaluer les modifications induites par l’effet des rayonnements.

Modélisation des équilibres de complexation des actinides en milieu nitrique. Application au procédé PUREX

Le code de calcul PAREX+ est un outil majeur dans le domaine de la chimie séparative. Il permet la modélisation et la simulation des procédés de séparation basés sur l’extraction par solvant. Dans ce code, la distribution des espèces d’intérêt entre les phases aqueuse et organique est calculée en tout point du procédé aussi bien en régime établi que dynamique. L’objectif de la thèse est d’améliorer le modèle de distribution présent au sein de ce code. Pour cela une meilleure compréhension des phénomènes mis en jeu au sein des phases organiques et aqueuses est nécessaire ainsi qu’une nouvelle approche pour les prendre en compte dans le modèle. Cette thèse associe donc l’expérimental et la modélisation. L’étudiant intégrera une équipe d’encadrement composée d’experts en chimie séparative et en modélisation. Son travail sera valorisé par l’émission de publications et de participations à des congrès internationaux. A l’issue de cette thèse, l’étudiant aura de solides connaissances dans le domaine de l’extraction par solvant et de sa modélisation qu’il pourra valoriser auprès des industriels ou des organismes de recherche du nucléaire ou dans les autres domaines de la chimie séparative (séparation des terres rares ou hydrométallurgie).

Compréhension des mécanismes de dissolution oxydante de (U,Pu)O2 en présence de platinoïdes

Le traitement des combustibles MOx, à base d’oxyde mixte d’uranium et de plutonium (U,Pu)O2, a pour objectif de recycler le plutonium. Le dioxyde de plutonium (PuO2) est difficile à dissoudre dans l’acide nitrique concentré. L’ajout d’une espèce très oxydante, telle que Ag(II), dans l’acide nitrique permet de solubiliser le plutonium avec des cinétiques de dissolution rapide : c’est la dissolution oxydante. Les produits de fission contenus dans le MOx irradié, notamment les platinoïdes, sont susceptibles de dégrader les performances de dissolution oxydante du plutonium via des réactions parasites. Pour le déploiement industriel de ce type de procédé, comprendre le rôle des platinoïdes sur la cinétique de cette dissolution s’avère donc primordial. Il n’existe cependant, à l’heure actuelle, que très peu de données sur ce sujet.

L’objectif de cette thèse est de contribuer à combler cette lacune. Le travail proposé consiste en une étude expérimentale paramétrique de complexité croissante : l’impact des platinoïdes sur la consommation d’Ag(II) sera d’abord étudié séparément, puis au cours de la dissolution de (U,Pu)O2. Ces résultats permettront de proposer un modèle cinétique de dissolution en fonction des paramètres étudiés.

A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie ou chimie minérale, maitrisera un large panel de techniques expérimentales ainsi que des méthodes de modélisation pointues. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.

Investigations en cellule tri-axiale et prise en compte de l’influence du comportement de la microstructure des agglomérats d’(U-Pu)O2 sur la simulation de la mise en forme de combustibles

Le sujet de recherche concerne la prise en compte de l’influence du comportement de la microstructure des agglomérats d’(U-Pu)O2 sur la simulation de la mise en forme de combustibles à travers des investigations en cellule triaxiale. Il s’articule autour des études expérimentales et numériques multi-échelle afin de proposer des simulations de la mise en forme des combustibles d’actinides avec prise en compte de la rupture et du réarrangement des agglomérats dans les lois de comportement homogénéisées sur VER. Pour ce faire, des investigations en cellule triaxiales sont envisagées d’une part sur VER en tomographie X-CT sur poudres modèles simulantes inactives et d’autre part sur échantillons de tailles industrielles sur poudres réelles actives. Des essais de rupture en tomographie X seront également envisagés dans le cas des matériaux inactifs et hors tomographies sur matériaux actifs, pour confronter les résultats expérimentaux et numériques dans le cas des endommagements des combustibles pré-frittés. Une confrontation sera également prévue afin de prendre en compte l’impact de l’approche envisagée sur les paramètres des modèles actuellement utilisés pour les simulations macroscopiques de la mise en forme des combustibles à l’échelle industrielle.

Dévéloppement d’un instrument microfluidique sans lentille de mesure in-situ de cinétiques de dissolution faciès dépendants

Cette thèse fait partie d’un programme ambitieux désigné comme un programme prioritaire de recherche. Ce projet identifie le sous-sol français comme un réservoir majeur de ressources nécessaires à la transition énergétique.
Dans ce contexte, un des enjeux majeurs est la dissolution de minerais dans le cadre de l’extraction minière et de la métallurgie extractive. En particulier, dans l’objectif de l’industrialisation des procédés, les cinétiques de dissolution des minerais doivent être compatibles avec l’empreinte au sol des installations, la biocompatibilité et le volume des réactifs consommés.
Le constat aujourd’hui est la très forte inadéquation entre le volume des données expérimentales produites et celles nécessaires pour modéliser les processus chimiques indispensables pour démontrer la viabilité des procédés industriels.
Cette thèse propose de mettre au point un banc prototype millifluidique d’acquisition de données cinétiques en masse par des techniques d’imagerie sans lentille. Ceci permettra de mesurer des cinétiques réactionnelles de dissolution par des techniques de reconstitution 3D, in-situ, dans des conditions chimiques stables et avec une représentativité statistique permettant la prise en compte des propriétés originales du solide.
Une large part des recherches sera orientée vers la mise au point de la technique optique sans lentille dans un dispositif millifluidique et la production en masse de données cinétiques chimiques pour des modèles de dissolution catalytiques.
Le profil recherché est celui d'un étudiant en physique et chimie généraliste, avec une forte envie d'apprentissage dans les domaines qu'il connait le moins comme la microfluidique ou de l'optique. A l'issue de cette thèse, l'étudiant acquerra une solide expérience professionnelle dans la recherche appliquée et apprendra à évoluer dans un environnement multithématique.

PREDICTION PAR LA SIMULATION DES VIBRATIONS DANS LES CENTRIFUGUESES

Les machines tournantes sont des équipements critiques dans de nombreuses installations industrielles et leur exploitation s’accompagne régulièrement de problèmes d’équilibrage qui occasionnent l’apparition de vibrations potentiellement dangereuses pour les opérateurs et les équipements. La décanteuse pendulaire centrifuge est parfois le siège de vibrations qui obligent l’exploitant à ralentir la cadence de production. L’environnement nucléaire dans lequel ces équipements sont exploités ne permet pas de réaliser les mesures et observations nécessaires à une étude purement expérimentale. L’objectif est donc de réaliser une modélisation à partir de données limitées afin d’amener à une compréhension fine des phénomènes en jeu. Le sujet de thèse se propose de coupler des simulations CFD de type Euler-Euler de la répartition de masse dans le bol tournant avec une modélisation masse-ressort des liaisons mécaniques afin de s’approcher des signaux vibratoires mesurés industriellement. Un tel outil numérique serait une aide précieuse pour explorer les diverses pistes, sources potentielle d’apparition d’un déséquilibre de masse, et cela sans avoir à passer par une reproduction expérimentale. Associé à des méthodes de deep learning, ce type de modèle permettrait aussi de bâtir un prédicteur de balourds à partir de courts signaux vibratoires ouvrant la porte à un pilotage actif de la décanteuse.

Conception et Optimisation d'un Procédé Innovant pour la Capture du CO2

Dans une enquête réalisée en 2023 par la BEI, deux tiers des jeunes français ont affirmé que l’impact climatique des émissions de leur potentiel futur employeur est un facteur important au moment de choisir un emploi. Mais pourquoi s’arrêter là quand vous pouvez choisir de travailler activement pour la réduction de ces émissions, tout dans le cadre d’un sujet de recherche riche et passionnant ? Au Laboratoire de Simulation de Procédés et analyse de Systèmes, nous proposons une thèse qui vise à concevoir et ensuite à optimiser un procédé pour la capture du CO2 dans les rejets gazeux des industries. Son principe de fonctionnement dérive du procédé « Benfield » pour la capture du CO2. Nous proposons des conditions opératoires optimisées pour lesquels le procédé Benfield serait plus performant. Le deuxième axe d’innovation consiste dans une étude de couplage thermique avec une installation industrielle disposant de la chaleur à céder.

La recherche sera menée en collaboration avec le CEA de Saclay et le Laboratoire de Génie Chimique (LGC) à Toulouse. Dans un premier temps, le thésard va réaliser des travaux de simulation numérique à l’aide d’un logiciel de simulation de procédé (ProSIM). Ensuite, il pourra explorer et proposer différentes solutions pour minimiser le besoin énergétique du procédé. Les schémas de procédé obtenus pourront être validés expérimentalement au LGC, où le thésard sera encadré par des experts en procédé de transfert liquide-gaz. Il sera responsable de mettre en place un montage expérimental à l’échelle pilote pour acquérir des données sur les étapes d’absorption et désorption en colonne, avec un garnissage de structure innovante conçu par la fabrication additive. Il conduira lui-même les manips et pourrait éventuellement encadrer un stagiaire pour le support aux acquisitions expérimentales.

Si vous êtes passionné du Génie de Procédés et que vous cherchez un sujet de thèse stimulant et de grand impact pour la société, postulez et intégrez nos équipes !

Etude expérimentale et modélisation de la cinétique d’oxydation des oxydes mixtes U1-yPuyO2

Dans un soucis d’économie des ressources en uranium et de stabilisation de son inventaire en plutonium, la France étudie la possibilité de généraliser l’emploi des combustibles à base d’oxyde mixte d’uranium et de plutonium (MOX) au sein de son parc électronucléaire. Ce scénario impliquerait de faire évoluer l’outil industriel existant pour permettre le traitement des MOX usés à cadence industrielle, et rendre ainsi possible le multi-recyclage du plutonium. Relever ce défi nécessite le développement de procédés innovants, dont les bases scientifiques sont à construire.
L’oxydation des MOX usés via un traitement thermique adapté pourrait permettre de lever un des verrous technologiques identifiés, qui réside dans la séparation du combustible de sa gaine métallique en amont de l’étape de dissolution. L’idée est de tirer parti des transformations de phase se produisant au cours de l’oxydation du combustible pour provoquer son effondrement en poudre. Il n’existe toutefois à l’heure actuelle que peu de données sur l’oxydation des oxydes (U,Pu)O2. L’objectif de cette thèse est de contribuer à combler cette lacune. L’étudiant(e) retenu(e) devra dans un premier temps caractériser les phases formées au cours de l’oxydation des oxydes (U,Pu)O2, ainsi que la cinétique et les mécanismes réactionnels associés. Ces résultats lui permettront d’aboutir à la proposition d’un modèle phénoménologique reliant la cinétique de suroxydation aux grandeurs d’intérêt que sont la teneur en Pu, la pO2, la température et la durée du traitement thermique.
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie des matériaux, maitrisera un large panel de techniques expérimentales ainsi que des méthodes pointues de modélisation de la réactivité des solides. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.

Top