Développement de supports fonctionnalisés pour la décontamination de surfaces complexes contaminées par des agents chimiques

Dans le cas d’une contamination par un agent chimique toxique, la prise en charge commence par une décontamination d’urgence rapide. Les personnes intervenant sur le terrain doivent tenir compte du risque de transfert de contamination, notamment en portant des tenues de protection adaptées. Ces tenues, ainsi que le petit matériel utilisé, doivent ensuite être décontaminés avant d’envisager le déshabillage pour éviter l’auto-contamination. La procédure comprend une phase de décontamination « sèche » généralement par application de poudres (souvent des argiles) qui sont ensuite essuyées à l’aide d’un gant ou d’une éponge. Cependant, ce dispositif ne neutralise pas les contaminants chimiques et la poudre se ré-aérosolise facilement, l’utilisation est donc limitée aux milieux non confinés et aérés. L’objectif est de cette thèse est d’élaborer une technologie alternative, pour la décontamination de surfaces complexes (tenues, petit matériel). Nous proposons d’étudier la fonctionnalisation de différents supports (tels que des gants, lingettes, microfibres, éponges, hydrogels…) par des particules adsorbantes (zéolithes, oxydes céramiques, MOFs…). Une étude bibliographique préliminaire permettra de sélectionner les adsorbants et supports les plus adaptés pour la capture d’agents chimiques modèles. Les travaux se focaliseront sur la préparation des supports, et différentes voies d’incorporation des particules dans/sur ces supports seront comparées. Les matériaux seront caractérisés (taux d’incorporation, homogénéité, tenue mécanique, non ré-aérosolisation…), puis leurs propriétés de transfert, de sorption et d’inactivation vis-à-vis de molécules modèles seront évaluées.

Ce sujet s'adresse à des chimistes, dynamiques, motivés par la pluridisciplinarité du sujet (chimie des matériaux minéraux et/ou polymères, caractérisation du solide et chimie analytique), et ayant un attrait particulier pour le développement de dispositifs expérimentaux. Le/la candidat(e) évoluera au sein du Laboratoire des Procédés Supercritiques et Décontamination sur le site de Marcoule, et bénéficiera de l’expertise du laboratoire en décontamination et en élaboration de matériaux adsorbants, ainsi que du soutien et de l'expertise de l'ICGM à Montpellier sur les polymères fonctionnels et les hydrogels. L’étudiant(e) interagira avec les techniciens, ingénieurs, doctorants et post-doctorants du laboratoire. Le/la doctorant(e) sera impliqué(e) dans les différentes étapes du projet, le reporting et la publication de ses résultats, et la présentation de ses travaux dans des conférences. Il/Elle développera de solides connaissances dans les domaines du nucléaire et de l’environnement, ainsi qu’en gestion de projet.

Elaboration et évaluation de la durabilité de membranes multicouches permsélectives à l’eau, applicables à la conversion du CO2 en électro-carburants

L’hydrogénation catalytique du CO2 en carburants est envisagée pour décarboner certains modes de transport difficilement électrifiables. Cependant, certaines des réactions de synthèse envisagées sont thermodynamiquement équilibrées (rendements de conversion du CO2 limités) et une dégradation du catalyseur par l’eau produite par la réaction est observée. L’utilisation de réacteurs membranaires, permettant la séparation de l’eau, est envisagée. Pour cela, le développement de membranes permsélectives à l’eau, sans défauts et résistantes aux conditions de synthèse, est nécessaire. Des études antérieures ont ciblé l’utilisation de membranes zéolithes (LTA et SOD) pour cette application. Cependant la présence de défauts réduit leur sélectivité, et leurs performances se dégradent en fonctionnement. L’objectif de cette thèse est donc d’étudier le colmatage des défauts des membranes et le dépôt de couches protectrices à leur surface pour améliorer leurs performances et leur durabilité. Pour cela, le dépôt de couches zéolithes permsélectives sera tout d’abord réalisé par voie hydrothermale sur des supports poreux adaptés. Le colmatage des défauts par imprégnation/conversion de précurseurs de silice en milieu CO2 supercritique sera ensuite étudié. Enfin, différentes couches protectrices (zéolithe, oxyde céramique…) seront déposées sur les membranes (voies sol-gel, CO2 supercritique, hydrothermale). Les dépôts seront caractérisés (DRX, MEB, porosimétrie, elipsométrie…) afin de s’assurer de la nature chimique du dépôt, de son épaisseur/homogénéité et de sa porosité. Les performances en perméation de gaz seront évaluées aux différentes étapes d’élaboration et la durabilité des membranes sera étudiée en présence de vapeur d’eau à différentes températures.
Le/la candidat(e) évoluera au sein du Laboratoire des Procédés Supercritiques et Décontamination (Marcoule), et bénéficiera de l’expertise du laboratoire dans les membranes céramiques. L’étudiant(e) interagira avec les techniciens, ingénieurs, doctorants et post-doctorants du laboratoire et échangera avec les collaborateurs du Laboratoire des Réacteurs et des Procédés (Grenoble). Le/la doctorant(e) sera impliqué(e) dans les différentes étapes du projet, la publication des résultats et la présentation de ses travaux dans des conférences. Il/Elle développera de solides connaissances dans les domaines de l’environnement et de l’énergie, ainsi qu’en gestion de projet.

Top