Flottation pour le recyclage de matières actives de batteries Li-ion : limitations et influence de l’hydrodynamique et de la physico-chimie interfaciale sur leur séparation sélective
Le recyclage des batteries est aujourd’hui un enjeu majeur pour l’UE, à la fois géopolitique, économique et environnemental. Très peu valorisé, le graphite, constituant l’anode des batteries Li-ion est concentré dans une fraction appelée blackmass où il est présent en mélange avec des oxydes métalliques à forte valeur commerciale. Ce graphite est alors considéré comme une impureté et cause le surdimensionnement des opérations hydrométallurgiques. Etant considéré comme critique et afin de réduire les coûts opératoires et d’investissement des procédés hydrométallurgiques, il est proposé de réaliser une étape de prétraitement de la blackmass afin de valoriser en voie directe le graphite. Cette étape est réalisée par flottation. Ce procédé de séparation de solides suspendus dans l’eau fait intervenir une troisième gazeuse sous forme de bulles d’air afin de séparer les particules suivant leur différence de mouillabilité et d’attachement aux bulles d’air. La complexité du processus de flottation, liée à la dépendance à la fois aux natures des interfaces et aux conditions hydrodynamiques, nécessite la réalisation de travaux de compréhension approfondie des mécanismes mis en jeux.
L’objectif du sujet proposé, qui fait suite à deux projets internes, est, en s’appuyant notamment sur des méthodes de caractérisation des interfaces, de stabilité, rhéologie des mousses, d’imagerie etc. d’identifier les mécanismes mis en jeu durant la flottation. Ceci dans l’optique d’améliorer les performances de l’étape de flottation et de pouvoir l’étendre à d’autres problématiques.
Les travaux de thèse s’effectueront au Laboratoire des technologies de Valorisation des procédés et des Matériaux pour les ENR (LVME) au CEA de Grenoble et en collaboration étroite avec les Laboratoire de Caractérisations Avancées pour l’Energie (LCAE) au CEA Grenoble, le Laboratoire des Procédés Supercritiques et décontamination (LPSD) ainsi que le Laboratoire de développement des procédés de recyclage et valorisation pour les systèmes énergétiques décarbonnés (LRVE) du CEA de Marcoule (30). En parallèle du travail expérimental, des modèles et mécanismes mis en jeu et les solutions techniques associées devront être proposés.
L’intérêt scientifique et industriel du sujet garantit une valorisation des travaux lors de communications internationales. Après le doctorat, à la fois l’intégration parmi les meilleures équipes de recherches académiques ou appliquées ou une carrière R&D directement dans le monde de l’industrie seront possibles.
(Nano)composites à (nano)charges cœur-coquille thermoconductrices et isolantes électriques orientables sous champ magnétique
Les avancées dans l'électronique de puissance, les moteurs électrique et les batteries par exemple engendrent une hausse significative de la production de chaleur pendant le fonctionnement. Cette augmentation de la densité de puissance associée à des surfaces d'échange thermique réduites amplifie les défis liés à l'évacuation de la chaleur. L'absence d'une dissipation adéquate entraîne une surchauffe des composants électroniques, impactant leurs performances, durabilité et fiabilité. Ainsi, il est impératif de développer une nouvelle génération de matériaux dissipateurs thermiques intégrant une structure dédiée à cet effet.
L’objectif et l’innovation des travaux du thésard résidera dans l’utilisation de (nano)charges très conductrices thermiquement qui seront orientables dans une résine époxy sous champ magnétique. Ainsi le premier axe de travail sera d’isoler électriquement les (nano)charges thermo-conductrices à fort facteur de forme (1D et 2D). L’isolation électrique de ces charges d’intérêt sera réalisée par voie sol-gel. La synthèse sera contrôlée et optimisée en vue de corréler l’homogénéité et l’épaisseur du revêtement aux performances diélectriques et thermique du (nano)composite. Le second volet portera sur le greffage de nanoparticules magnétiques (NPM) sur les (nano)charges thermo-conductrices. Des NPM commerciales seront évaluées ainsi que des nuances synthétisées en laboratoire. Les (nano)composites devront posséder une rhéologie compatible avec le procédé d'infusion de résine.
Compréhension des mécanismes de l’hydrogénation par voie directe du CO2 par des catalyseurs (Na,K)FeOx via un couplage théorique-expérimental
Face au dérèglement climatique, la sobriété énergétique pour réduire nos émissions de CO2 s'impose. Une autre solution au problème existe : la capture, le stockage et l'utilisation du CO2, et ce afin de tendre vers une économie circulaire du carbone, et à terme la défossilisation. Dans cette optique, l'hydrogénation par voie directe du CO2 permet de le transformer en molécules d'intérêts tels que les hydrocarbures, via le couplage de la réaction reverse water gas shift (RWGS) et de la synthèse Fischer-Tropsch (FTS).
La catalyse computationnelle operando a récemment émergé comme étant une alternative raisonnée au développement de nouveaux catalyseurs grâce à une approche multi-échelle de l’atome jusqu’à la particule active, afin de modéliser la sélectivité et l’activité du catalyseur. Les nouveaux outils combinant les simulations ab initio (DFT) et la dynamique moléculaire (MD) via des algorithmes de machine learning permettent de faire le lien entre la précision des calculs DFT et la puissance des simulations atomistiques. Les catalyseurs actuels bifonctionnels (car actifs pour la RWGS et la FTS) pour l’hydrogénation par voie directe du CO2 sont à base d’oxydes de fer dopés (promoteurs métalliques).
Ce projet a pour objectif l’étude théorique de catalyseurs de type Na-FeOx et K-FeOx dopés avec du Cu, Mn, Zn et Co, et ce en 4 étapes : les simulations DFT (énergies d’adsorption, densités d’états, barrières d’énergies, états de transition), la modélisation microcinétique (constantes de réaction, TOF), la construction de potentiels interatomiques par couplage DFT/machine learning, la simulation de particules entières (sélectivité, activité, grandeurs microscopiques).
Cette étude théorique ira de pair avec la synthèse et des mesures expérimentales des catalyseurs étudiés, et des catalyseurs optimisés émergeants des résultats computationnels. Toutes les données accumulées (DFT, MD, propriétés catalytiques) pourront alimenter une base de données, qui pourra être exploitée à terme pour faire émerger des descripteurs d’intérêt pour l’hydrogénation du CO2.
Rôle de la microstructure dans les performances des aimants frittés SmFe12-xMx
Les composés de type TR-Fe12 et de structure quadratique ThMn12 possèdent des propriétés intrinsèques (anisotropie magnétocristalline HA, aimantation à saturation Ms et température de Curie TC) très intéressantes. Ils sont considérés comme la meilleure alternative aux aimants NdFeB et permettant une économie de TR d’environ 35% en poids.
Pour les composés à base de Sm, de type Sm(Fe,Ti,V)12, il a été démontré que la formation d’une phase aux joints de grains par ajout d’éléments d’addition permet d’augmenter significativement la coercitivité jusqu’à 1,4 T. Cependant, la remanence reste faible, en dessous de 1 T, ce qui limite le champ d’application de ces aimants. Dans cette thèse nous proposons une étude des éléments d’addition et conditions de synthèse susceptibles d’augmenter à la fois la remanence mais aussi la coercitivité des aimants de type TR-Fe12.
Pour les composés Sm-Fe12, les éléments d’addition étudiés viseront à augmenter la rémanence de ces aimants en réduisant le taux de substitution du Fe par des éléments stabilisant. Ils viseront également à favoriser la formation de phases paramagnétiques aux joints de grains pour augmenter la coercitivité.