Impression 4D d'hydrogels de polysaccharides biocompatibles pour des applications biomédicales

L'impression 3D de matériaux intelligents capables de réagir sous l'action d'un stimulus, est appelé "impression 4D" et présente un intérêt croissant pour le développement de dispositifs médicaux innovants. Plusieurs matériaux préparés à partir de polymères de synthèse ont été décrits dans la littérature, et présentent la capacité de changer de forme sous l'action d'un stimulus tel que la température, une source lumineuse, un champ magnétique ou une modification du pH.
Afin de de transposer ce concept au domaine biomédical, ce sujet de thèse vise le développement d'hydrogels biosourcés à partir de polysaccharides naturels biocompatibles, imprimables en 3D et sensibles à différents stimuli. Les hydrogels développés seront en particulier capables de se déformer sous l'action de 2 stimuli différents : (i) une modification de la température, ou (ii) l'application d'un faisceau lumineux dans le domaine du proche infrarouge, permettant l'activation du matériau tout en évitant la dégradation de tissus biologiques. Pour cela, les chaines de polysaccharides seront d'abord fonctionnalisées avec des groupements thermosensibles (i), et des nanoparticules biocompatibles et capables d'absorber la lumière infrarouge seront intégrées dans les matériaux.
Il s'agit d'un projet à l'interface entre chimie (synthèse de polymères, synthèse de nanoparticules), physico-chimie (formulation et caractérisation d'hydrogels photoréticulables), sciences des matériaux (impression 3D, essais mécaniques) et biologie (études de cytotoxicité). D'autre part, les données générées par le doctorant seront utilisées par des outils d'intelligence artificielle, qui permettront d'accélérer le développement des hydrogels visés.

Composites magnétiques doux de type nanocristallins : Mise en forme des poudres et contrôle des propriétés magnétiques pour applications hautes fréquences

Contexte : L’atteinte de la neutralité carbone en 2050 passe par une électrification massive des usages. L’électronique de puissance (EP) est le système de contrôle qui permettra cette mutation (pénétration des EnR, intégration des micro-réseaux d’énergie, développement de la mobilité électrique) - Problématique : Les développements actuels des convertisseurs de l’EP visent à augmenter les fréquences de commutation des interrupteurs grands gaps (SiC ou GaN). A basse fréquence les composants magnétiques restent volumineux et occupent jusqu’à 40% de l’encombrement total. A haute fréquence (HF > 100 kHz) des gains très importants sont espérés mais ceci uniquement si les pertes générées dans ces composants restent maitrisées. Aujourd’hui la seule classe de matériaux magnétiques appliquée à la HF reste les céramiques de type ferrites MnZn ou NiZn du fait de leur faible cout et de leur bonne résistivité électrique (?elec > 1 O.m). Les principaux inconvénients de ces matériaux sont reliés à leur faible induction à saturation (Bsat < 0.4 T) qui limite la réduction de dimension) et aussi à leur fragilité mécanique. Les matériaux nanocristallins ont des Bsat meilleures (1.3 T), mais leur ?elec est de l’ordre de 1.5 µO.m (6 fois moins résistif que les ferrites) ce qui génère des pertes par courant induits importants à HF. Objectif de la thèse : Développer des composites magnétiques en suivant des étapes de : broyage de rubans nanocristallins, d'isolation électrique des poudres (revêtement d'épaisseur fine par sol-gel), de compaction des poudres à haute pression (1000-2000 MPa) pour la mise en forme du noyau puis d’une relaxation thermique des contraintes pour minimiser les champs coercitifs et obtenir des pertes plus faible à HF

Etude des matériaux NMC pour accumulateurs lithium-ions par spectroscopie de photoémission à rayonnement X mous et durs expérimentale et théorique

La spectroscopie par photoémission (par rayons X, XPS, ou dans l'ultraviolet, UPS) est le reflet direct de la structure électronique des matériaux, qui est au coeur des processus redox en jeu dans les batteries à l’échelle atomique. Elle est cependant limitée par l'extrême sensibilité à la surface du matériau, avec une longueur typique de parcours du photoélectron de quelques nanomètres aux énergies usuellement accessibles en laboratoire. De plus, l’interprétation des spectres nécessite d’être capable de modéliser cette structure électronique avec précision, ce qui est particulièrement délicat dans le cas des matériaux de cathode qui contiennent des métaux de transition et sont utilisés dans une large plage de composition en Lithium. En effet, la structure électronique de ces matériaux présente des effets de corrélations électroniques dont le caractère dépend notamment du remplissage des orbitales « d ».
Dans cette thèse, nous proposons de lever ces limitations et de les utiliser à notre avantage pour explorer la structure électronique de surface comprenant l’interphase électrolyte solide (SEI), et celle du coeur de la particule active de cathode à base d’oxydes lamellaires Li(Ni1-x-yMnxCoy)O2 (NMC). .
Pour ce faire, nous tirerons avantage des apports de la spectroscopie de photoélectron à haute énergies de rayon X (HAXPES), installé à la PlateForme NanoCaractérisation (PFNC), et permettra de sonder les matériaux jusqu'à une vingtaine de nanomètres. La comparaison entre les spectres XPS et HAXPES, durant le fonctionnement des batteries (operando) et sur la même zone, permettra de découpler les spectres de surface et de coeur pour différentes compositions chimiques et à différents stades du cycle de vie de la batterie. L'interprétation des spectres de photoémission sera faite par comparaison directe avec des calculs ab initio combinant la théorie de la fonctionnelle de la densité (DFT) avec la théorie du champ moyen dynamique (DMFT). Ce couplage permettra à la fois d'aller au-delà des techniques usuelles basées sur des modèles de cluster, qui ne prennent pas en compte l'écrantage métallique, et de valider la qualité des prédictions théoriques sur les effets de corrélations électroniques (masse effective, potentiel transfert de poids spectral vers les bandes de Hubbard).
La thèse comportera une partie de développement instrumental (en particulier, calibration des surfaces efficaces sur des systèmes modèles) et théorique (prédiction des spectres de photoémission de coeur sur la base de calculs DFT+DMFT), puis s'attachera à comparer la performance et le vieillissement de différents matériaux de cathode (NMC de différentes compositions) en combinaison avec des électrolytes liquides et solides et une anode Li métal.
Le candidat sera accueilli dans les laboratoires L2N du DTNM et LMP du DEHT pour mener ses travaux.

Développement de catalyseurs d’hydrogénation du CO2 en oléfines légères

Les oléfines légères comme l’éthylène et le propylène font partie des composés organiques les plus produits dans le monde, en tant qu’intermédiaires lors de la production de polymères, solvants, etc... Ces molécules sont issues de ressources fossiles, notamment produit par vapo-crackage du naphta. La réduction de l’empreinte carbone des produits issus de ces oléfines légères passera par l’utilisation de ressources non-fossiles pour leur production. Comme souligné par le GIEC dans son rapport sur les solutions de mitigations contre le réchauffement climatique, le CO2 atmosphérique est la source de carbone à considérer.
L’objectif de la thèse consiste à développer un catalyseur pour l’hydrogénation directe du CO2 en oléfines légères. L’hydrogénation directe consiste en la transformation du CO2 en molécules à hautes valeurs ajoutées en un seul réacteur. Les catalyseurs développés seront à base de Fe combinant la fonction Reverse Water Gas Shift (RWGS) et polymérisation type Fischer-Tropsch (FT). Le sujet proposé vise à préparer des nanoparticules de Fe de taille et composition contrôlées et de les déposer sur des supports (alumine, silice, carbone …), afin de mieux comprendre les phases du Fe (carbure, oxyde) mises en jeu dans ces réactions. Les catalyseurs développés seront évalués en réacteur capillaire, et finement caractérisés par diverses méthodes (DRX, XPS, HRTEM,…) pour permettre la compréhension des mécanismes réactionnels.

Chimie de greffage de polyoléfines en fondu pour panneaux photovoltaïques réparables et recyclables

Chimie de greffage de polyoléfines en fondu pour panneaux photovoltaïques réparables et recyclables
Les panneaux solaires sont des assemblages multi matériaux constitués de cellules photovoltaïques contenant de nombreux métaux précieux (Silicium métal, Argent), de verre de haute qualité utilisé comme protection, couteux à fabriquer et d’un film polymère jouant le rôle de liant. Ce dernier est appelé encapsulant et est généralement réalisé à partir de thermoplastiques qui vont être réticulés durant la fabrication des panneaux photovoltaïques, ce qui rend l’étape de démontage des panneaux et le recyclage des matériaux le constituant très difficile.
Le CEA développe de nouveaux matériaux pour améliorer la recyclabilité des systèmes de production de nouvelles énergies, comme les panneaux photovoltaïques. Le sujet de thèse vise le développement de nouveaux encapsulants permettant d’améliorer la recyclabilité des panneaux photovoltaïques, via une méthode de réticulation réversible des encapsulants. Les travaux de thèse seront divisés en deux parties, lesquelles représentent les différentes étapes nécessaires à la réalisation de ces encapsulants. Dans un premier temps différents composés vinyliques d’intérêt seront greffés sur des polyoléfines en voie fondue (extrusion, mélangeur interne). Les réactivités des différents composés seront évaluées, et les évolutions des propriétés thermiques, optiques, et structurales des polyoléfines fonctionnalisées seront caractérisées. Dans une seconde étape, la molécule précédemment greffée viendra servir de support pour la mise en place d’une réticulation covalente dynamique grâce à l’ajout en milieu fondu d’un catalyseur de transestérification et de diols porteurs de liaisons siloxanes échangeables. L’impact de cette réticulation sur les propriétés mécaniques, optiques et thermiques sera caractérisé, et une optimisation des propriétés du matériau pour l’application photovoltaïque sera visée. En fin de thèse, le matériau développé sera testé sur des mini-modules photovoltaïques afin de valider son efficacité en tant qu’encapsulant mais aussi valider l’étape de désassemblage.

Impression de pièces haute performance en SiC pour l’électrolyse de l’acide fluorhydrique

Le fluor occupe une place essentielle dans le cycle du combustible nucléaire : il est un maillon indispensable pour la préparation du UF6 utilisé dans le procédé d’enrichissement de l’uranium employé dans les centrales nucléaires. Le fluor est produit par électrolyse du sel fondu KF-2 HF sur l’anode carbonée non graphitée entre 85°C et 100°C. La réaction de réduction qui a lieu à la cathode produit de l'hydrogène. Un cuve d’électrolyse est composé de couvercles, serpentins de refroidissement, diaphragme en alliage de nickel (67 %) et de cuivre (28 à 30 %). Cet alliage possède une résistance remarquable aux phénomènes de corrosion et d’érosion. L’augmentation du rendement énergétiques et de la durée de vie des composants nécessitent le replacement des matériaux et de redéfinir les procédés de fabrication. Aussi il est envisagé de remplacer ce matériau par une céramique haute performance, le carbure de silicium afin de développer de nouveaux diaphragmes à géométries plus complexes pour améliorer la séparation des gaz.
L’objectif de la thèse consistera à étudier les performances d’un matériau formulé à base de SiC, imprimé par fabrication additive et fritté afin d’obtenir des pièces de densités élevées (70-90%) et à faible taux d’oxygène pour être compatible avec l’électrolyse HF.
Une étude approfondie sera entreprise par des analyses IGA/ICP, MEB-MET/EDX sur des matériaux SiC développés et mis en forme par frittage flash (screening) afin de mettre en relation la nature du SiC, la densité et la localisation de l’oxygène. Une seconde étape portera sur la mise en forme par impression 3D du matériau sélectionné suivi de traitements thermiques de frittage avec comme verrou technologique l’obtention de pièces de densité élevée Les performances de ces pièces simples et complexes seront évaluées en milieu HF et sous bullage fluor. Ces mises en œuvre seront suivies de caractérisations afin d’établir des relations entre les propriétés du matériau obtenu par impression 3D (sa microstructure, sa densité, la présence d’oxygène) et ses performances.

Développement de matériaux d'électrode durables pour la production d'hydrogène par électrolyse de l'eau

L'électrolyse haute température (EHT) est aujourd'hui envisagée comme la technologie à haut rendement pour produire l'hydrogène avec un faible impact carbone. La réaction d’électrolyse a lieu dans une cellule constituée d’un empilement de couches céramiques, dans laquelle une molécule d'eau se dissocie sous l'effet d'un courant électrique et d'un apport de chaleur pour former de l'hydrogène et de l'oxygène. Pour rendre la technologie EHT en adéquation avec les objectifs de développement durable de l'Accord de Paris, il est essentiel de réduire la dépendance aux matières premières critiques (Critical Raw Materials CRM) de cette technologie.
La thèse proposée s’inscrit dans le cadre d’un projet européen, SUSTAINCELL. Celui-ci vise à soutenir l'industrie européenne dans le développement de la prochaine génération d'électrolyseurs et de technologies de piles à combustible (à basse et haute température) en développant une chaîne d'approvisionnement européenne durable de matériaux, de composants et de cellules.
L’objectif de la thèse est de limiter l’utilisation de matériaux critiques dans le matériau d’électrode à oxygène, un oxyde de structure pérovskite à base de lanthane, de strontium, de cobalt et de fer, en substituant les éléments critiques par de nouveaux cations. En parallèle, une partie des travaux sera menée sur l’optimisation du procédé de synthèse, en termes de rendement et de montée en capacité.
Après une étude bibliographique sur les matériaux d’électrodes à oxygène, le travail proposé sera dans un premier temps axé sur la synthèse par voie chimique ainsi que sur la caractérisation fine de différentes compositions. La compatibilité thermique et chimique avec les autres matériaux constituant la cellule sera étudiée, puis ce travail débouchera sur la mise en forme des matériaux avec les propriétés les plus intéressantes afin de les tester électriquement et électrochimiquement. Le comportement électrochimique de l’électrode sera analysé afin de comprendre l’influence des substitutions et de déterminer les performances électrochimiques

Top