Imagerie de contraste de phase différentiel à base de capteur d'image quad-pixel
La bioproduction de médicament est en plein essor et consiste à faire produire par des cellules les molécules d’intérêt. Pour cela, un suivit de la culture et de l’état des cellules est nécessaire. L’imagerie de phase quantitative par holographie est une méthode optique sans marquage qui a déjà démontré sa capacité à mesure la concentration et la viabilité des cellules cultivées. Toutefois l’implémentation de cette technique dans un bioréacteur se confronte à plusieurs difficultés liées à la forte concentration des cellules. Il est donc nécessaire de développer de nouvelles méthodes d’imagerie de phase quantitative comme l’imagerie par contraste de phase différentiel. L’objectif de la thèse est de développer cette technique avec l’utilisation d’un capteur d’image particulier dont un prototype a été réalisé au CEA-LETI. Le doctorant utilisera ce nouveau capteur et développera les algorithmes de reconstruction et de traitement d’images. Il identifiera également les points limitant du prototype actuel et définira les spécifications d’un second prototype qui sera réalisé au CEA-LETI. Enfin il se projettera dans la réalisation d’une sonde in-line, plongée dans le bioréacteur.
Conception d’un circuit intégré de décodage de l’activité cérébrale motrice pour l’utilisation autonome d’une interface cerveau machine de suppléance motrice
Ce travail s’inscrit dans le cadre du développement d’interfaces cerveau-machine dédiées à la restauration de la mobilité pour des patients souffrant de handicaps moteurs chroniques sévères. Les solutions technologiques proposées reposent sur le décodage des signaux cérébraux acquis au niveau du cortex moteur, afin d’extraire les intentions de mouvement (Benabid et al, The Lancet Neurology, 2019 ; Lorach et al, Nature 2023). Ces intentions servent de commandes pour des systèmes de compensation motrice. Notre équipe est pionnière dans ce domaine, ayant développé WIMAGINE, l’un des premiers implants chroniques sans fil, ainsi qu’un décodeur et des effecteurs adaptés aux besoins des patients paraplégiques ou tétraplégiques.
La recherche proposée fait suite à une première thèse dont l’objectif était de concevoir un circuit intégré spécifique, capable de répliquer les performances du décodeur de signaux cérébraux avec une consommation énergétique extrêmement réduite, en utilisant un modèle fixe. Cependant, en raison des changements de stratégie de l’utilisateur ou de l’évolution naturelle de ses structures cérébrales, les performances du modèle de décodage tendent à se dégrader au fil des mois, nécessitant une recalibration régulière. Des premières stratégies de compensation de ces phénomènes ont été identifiées. L’objectif du candidat sera de perfectionner ces stratégies et de proposer une implémentation sous la forme d’un circuit numérique à très basse consommation.
La thèse se déroulera à Grenoble, au sein d’une équipe projet dynamique composée d’experts reconnus dans la conception et la validation clinique des interfaces cerveau-machine. L’équipe se distingue particulièrement dans la conception de circuits intégrés spécifiques et le développement d’algorithmes de décodage de signaux. Ce cadre permettra au doctorant d’évoluer dans un environnement scientifique stimulant et de valoriser ses travaux de recherche, tant en France qu’à l’étranger.
Suivi en ligne des procédés de bio-production par imagerie holographique 3D
La culture des cellules adhérentes est un moyen prometteur pour différentes applications en bioproduction, comme la fabrication et l'administration de biomédicaments, la médecine régénérative, ou le suivi de la différenciation cellulaire. Cependant, elle pose des défis majeurs pour l’analyse des cellules sans affecter l’intégrité du substrat. L’imagerie holographique sans lentille se présente comme une solution prometteuse, capable de capturer des images de cellules sur un grand champ de vue sans aucune étape biochimique supplémentaire.
Cette thèse propose de développer un système d’imagerie holographique 3D pour le suivi des cellules adhérentes en temps quasi-réel, avec des algorithmes avancés pour la reconstruction et l’analyse d’images. Le système testé en terme de précision et robustesse sur des cultures biologiques variées. L’utilisation de l’apprentissage profond permettra la segmentation et l'analyse des cellules en temps quasi-réel, facilitant ainsi le suivi des dynamiques cellulaires. Ce projet innovant promet d'optimiser les procédés biologiques en offrant une vision non invasive des échantillons multicellulaires en 3D, avec des applications potentielles comme le suivi d’organes-sur-puce et de systèmes cellulaires complexes.
Microscopie de fluctuations pour l’imagerie fonctionnelle d’organoïdes
La microscopie à contraste de phase et la microscopie de fluorescence sont les deux piliers de l’imagerie biologique moderne. Le contraste de phase révèle la morphologie de l’échantillon, tandis que le marquage fluorescent apporte la spécificité au processus d’intérêt. Dans les deux cas l’image est la valeur moyenne du signal mesuré. Dans cette thèse il est proposé de s’intéresser non pas à la valeur moyenne, mais aux fluctuations observées en contraste de phase. Ce nouveau contraste sera appelé imagerie de fluctuations. Les fluctuations proviennent des phénomènes de transport actif et passif caractérisant la machinerie cellulaire, et on peut penser que le niveau de fluctuations est corrélé à l’activité cellulaire. L’objectif de la thèse est de détecter les fluctuations en contraste de phase, de les quantifier et de les relier à l’aide de méthodes d’apprentissage automatique à un processus d’intérêt. L’objet d’étude sera l’activation des lymphocytes qui est un paramètre critique pour la surveillance du rejet chez certains patients atteints de diabète de type 1 ayant subi une greffe d’îlots de Langerhans. L’imagerie de fluctuation permettrait un suivi sans marquage, simplifiant le protocole de surveillance. Le travail attendu est (i) l’optimisation d’un microscope à contraste de phase pour détecter les fluctuations, (ii) l’analyse de séquences d’images pour les quantifier, et (iii) la mise en œuvre de la méthode développée sur divers modèles biologiques dont certains seront des organes de pancréas sur puce. Cette thèse à la frontière entre instrumentation, biophysique et biologie s’adresse à un(e) étudiant(e) avec une formation en optique, physique ou équivalent, avec de bonnes connaissances en traitement d’images et un fort intérêt pour les applications en biologie-santé.
Développement d'hydrogels injectables adhésifs pour le traitement des déchirures rétiniennes
Les déchirures rétiniennes entrainant le décollement de la rétine constituent une affection oculaire grave (20 à 25 cas pour 100 000 habitants en France chaque année), nécessitant une intervention chirurgicale urgente. Les traitements actuels consistent à retirer le vitré, injecter un gaz comme agent de tamponnement, et à sceller les déchirures au laser. Cependant, cette méthode présente des restrictions pour le patient (position allongée prolongée) et peut entrainer des complications (cataractes). Des hydrogels injectables sont étudiés comme alternatives aux agents de tamponnement, mais ils ne possèdent pas de propriétés adhésives pour suturer les déchirures, et un traitement au laser reste nécessaire. Des colles chirurgicales ont également été testées, mais les adhésifs à base de cyanoacrylate sont toxiques, ceux à base de fibrine sont difficiles à utiliser dans l’œil, et les matériaux à base d’acide hyaluronique (HA) actuels manquent de stabilité et d’adhésivité.
Ce projet de thèse vise à développer un hydrogel à base de HA stérile et injectable, doté de fortes propriétés adhésives pour sceller les déchirures rétiniennes. Les propriétés visées pour l’hydrogel incluent la biocompatibilité, l’injectabilité (aiguille 30G), l’adhésivité tissulaire (1,5 à 3,7 N) et une administration rapide (en moins d’une heure). Notre équipe a précédemment mis au point un hydrogel de HA injectable à réticulation dynamique offrant une stabilité à long terme, une biocompatibilité et une transparence optique. Pour lui conférer des propriétés d’adhésion tissulaire, deux stratégies seront testées : (1) l’ajout d’acide tannique adhésif dans la formulation de l’hydrogel ou (2) le greffage de groupes adhésifs sur le squelette de HA. La biocompatibilité de l’hydrogel sera évaluée, ainsi que ses propriétés adhésives pour la réparation de la rétine en employant différents modèles précliniques.
Cet hydrogel innovant pourrait simplifier la chirurgie rétinienne, réduire les complications, et diminuer les coûts. Au-delà de la réparation rétinienne, il pourrait être applicable dans la chirurgie de la cornée et d’autres domaines médicaux.
Mesure optique intradermique via des microaiguilles instrumentées
Le cortisol, joue un rôle central dans la régulation du cycle circadien et dans de nombreux processus physiologiques essentiels tels que le métabolisme énergétique et la réponse immunitaire. La surveillance conventionnelle du cortisol repose sur des prélèvements sanguins ou salivaires ponctuels, qui ne reflètent pas fidèlement la dynamique temporelle de sa sécrétion. Il devient donc nécessaire de développer des approches innovantes permettant une mesure continue, peu invasive et fiable de la concentration de cortisol chez les patients.
Le projet doctoral vise à développer une instrumentation originale optique couplée à des microaiguilles fonctionnalisées avec des aptamères fluorescents pour le suivi de cortisol intradermique, de manière continue, minimalement invasive et sans prélèvement. Dans ce cadre, le doctorant aura pour mission de concevoir et de dimensionner les futures microaiguilles optiques destinées à la détection du cortisol. De mettre en place des dispositifs expérimentaux nécessaires à la caractérisation des microaiguilles optiques fabriquées au sein du département et de tester les performances des microaiguilles dans un environnement représentatif. Enfin, le doctorant développera une méthodologie complète de traitement et d’analyse des données afin d’identifier les paramètres clés permettant d’établir un lien quantitatif entre les signaux collectés et la concentration en cortisol. L’ensemble de ces travaux contribuera à la mise au point d’un dispositif de mesure innovant basé sur les technologies de rupture d’émission et de détection optiques disponibles au CEA-LETI, combinant précision, sensibilité, compacité et donc compatibilité avec une utilisation in vivo.
L'infertilité est un problème croissant dans tous les pays développés. Les méthodes standard de diagnostic de la stérilité masculine examinent la concentration, la mobilité et les anomalies morphologiques des spermatozoïdes individuels. Cependant, 40% des cas d'infertilité masculine reste inexpliqué avec les outils de diagnostic standard.
Dans cette thèse, nous explorerons la possibilité de déterminer les causes de l'infertilité masculine à partir de l'analyse détaillée des trajectoires 3D et de la morphologie des spermatozoïdes nageant librement dans un environnement imitant les conditions de l'appareil reproducteur féminin. Pour cette tâche difficile, nous développerons un microscope spécialisé basé sur l'holographie pour l'imagerie rapide et le suivi des spermatozoïdes individuels. Outre les méthodes numériques classiques, nous utiliserons des algorithmes d'intelligence artificielle pour améliorer la qualité de l'imagerie et pour analyser les données multidimensionnelles.
Tout au long du projet, nous collaborerons étroitement avec un institut de recherche médicale (CHU/IAB) spécialisé dans les technologies de reproduction assistée (ART). Nous examinerons des échantillons de patients réels afin de développer un nouvel outil pour le diagnostic de l'infertilité masculine.
Développement et monitoring multiparamétrique d’un modèle microfluidique sur puce de la barrière hémato-encéphalique
La barrière hémato-encéphalique (BHE) assure la protection du cerveau en contrôlant les échanges entre le sang et le tissu nerveux. Cependant, les modèles actuels peinent à reproduire fidèlement sa complexité. Cette thèse vise à développer puis à évaluer un nouveau modèle microfluidique de BHE sur puce intégrant un système de monitoring en temps réel combinant mesures optiques et électriques en simultané. Le dispositif permettra d’étudier la perméabilité, la résistance transendothéliale et la réponse cellulaire à divers stimuli pharmacologiques ou toxiques. En combinant microtechnologies, co-cultures cellulaires et capteurs intégrés, cet avatar biologique offrira une approche plus physiologique et dynamique que les systèmes in vitro classiques permettant d’améliorer la compréhension des phénomènes de diffusion/perméation des molécules thérapeutiques. Ce projet contribuera au développement d’outils prédictifs pour la neuropharmacologie, la toxicologie et la recherche sur les maladies neurodégénératives.