Génération assistée de noyaux de calculs complexes en mécanique du solide

Les lois de comportement utilisées dans les simulations numériques décrivent les caractéristiques physiques des matériaux simulés. À mesure que notre compréhension de ces matériaux évolue, la complexité de ces lois augmente.L'intégration de ces lois constitue une étape critique pour la performance et la robustesse des calculs scientifiques. De ce fait, cette étape peut conduire à des développements intrusifs et complexes dans le code.

De nombreuses plateformes numériques telles que FEniCS, FireDrake, FreeFEM, Comsol, proposent des techniques de génération de code à la volée (JIT, pour Just In Time) pour gérer différentes physiques. Cette approche JIT réduit considérablement les temps de mise en oeuvre de nouvelles simulations, offrant ainsi une grande versatilité à l'utilisateur. De plus, elle permet une optimisation spécifique aux cas traités et facilite le portage sur diverses architectures (CPU ou GPU). Enfin, cette approche permet de masquer les détails d'implémentation: une évolution de ces derniers est invisible pour l'utilisateur et est absorbée par la couche de génération de code.

Cependant, ces techniques sont généralement limitées aux étapes d'assemblage des systèmes linéaires à résoudre et n'incluent pas l'étape cruciale d'intégration des lois de comportement.

S'inspirant de l'expérience réussie du projet open-source mgis.fenics [1], cette thèse vise à développer une solution de génération de code à la volée dédiée au code de mécanique des structures de nouvelle génération Manta [2] développé par le CEA. L'objectif est de permettre un couplage fort avec les lois de comportement générées par MFront [3], améliorant ainsi la flexibilité, les performances et la robustesse des simulations numériques.

Le doctorant recherché devra posséder une solide culture numérique et un goût prononcé pour la simulation numérique et la programmation en C++. Il devra faire preuve d’autonomie et être force de proposition. Le doctorant bénéficiera d'un encadrement de la part des développeurs des codes MFront et Manta (CEA), ainsi que des développeurs du code A-Set (collaboration entre Mines-Paris Tech, Onera, et Safran). Cette collaboration au sein d'une équipe multidisciplinaire offrira un environnement stimulant et enrichissant pour le candidat.

De plus, le travail de thèse sera valorisé par la possibilité de participer à des conférences et de publier des articles dans des revues scientifiques à comité de lecture, offrant une visibilité nationale et internationale aux résultats de la thèse.

Le doctorat se déroulera au CEA Cadarache, dans le sud est de la France, au sein du département d'études des combustibles nucléaires de l'Institut REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) [4]. Le laboratoire d'accueil est le LMPC dont le rôle est de contribuer au développement des composants physiques de la plateforme numérique PLEIADES [5], co-développée par le CEA et EDF.

[1] https://thelfer.github.io/mgis/web/mgis_fenics.html
[2] MANTA : un code HPC généraliste pour la simulation de problèmes complexes en mécanique. https://hal.science/hal-03688160
[3] https://thelfer.github.io/tfel/web/index.html
[4] https://www.cea.fr/energies/iresne/Pages/Accueil.aspx
[5] PLEIADES: A numerical framework dedicated to the multiphysics and multiscale nuclear fuel behavior simulation https://www.sciencedirect.com/science/article/pii/S0306454924002408

Modélisation multiphysique du frittage du combustible nucléaire : effet de l’atmosphère sur la cinétique du retrait

Les combustibles de dioxyde d’uranium (UO2), utilisés dans les centrales nucléaires sont des céramiques, dont le frittage en phase solide est une étape-clé de la fabrication. L’étape de frittage consiste en un traitement thermique sous pression partielle contrôlée de O2 permettant de consolider, densifier le matériau et faire grossir les grains de UO2. Le grossissement des grains induit la densification du matériau (fermeture des pores) et le retrait macroscopique de la pastille. Si le compact (poudre comprimée par pressage avant le frittage) admet de fortes hétérogénéités de densité, une différence de densification dans la pastille peut avoir lieu entraînant un retrait différentiel et l’apparition de défauts. De plus, l'atmosphère de frittage, c'est-à-dire la composition du gaz dans le four, impacte la cinétique de grossissement des grains et donc le retrait de la pastille. Ainsi, une simulation avancée permettrait d'améliorer la compréhension des mécanismes observés ainsi que d'optimiser les cycles de fabrication.

Cette thèse se consacre à la mise en place d’un modèle thermique-chimique-mécanique du frittage pour simuler l’impact de la composition et les propriétés physiques de l’atmosphère sur la densification du combustible à l’échelle de la pastille. Cette échelle nous permettra de considérer les gradients de densité issus du pressage, mais également de prendre en compte la cinétique de diffusion d’oxygène impactant localement la vitesse de densification qui elle-même impactera le processus de transport. Une simulation multiphysique est nécessaire pour simuler le couplage de ces phénomènes.

Ce travail de thèse sera mené au sein du Laboratoire commun MISTRAL (Aix-Marseille Université/CNRS/Centrale Marseille et l'institut IRESNE du CEA-Cadarache). Le doctorant valorisera ses résultats au travers de publications et participations à des congrès et aura acquis de solides compétences qui sont recherchées et valorisables dans un grand nombre de domaines académiques et industriels.

Top