Physique des matériaux pérovskites pour la radiographie médicale : étude expérimentale du gain de photoconduction
La radiographie est la modalité d’imagerie médicale la plus utilisée. Elle sert à établir des diagnostiques, à suivre l’évolution de pathologies et à guider certaines interventions chirurgicales.
L’objectif de cette thèse est d’étudier un matériau semi-conducteur de la famille des pérovskites pour la conversion directe des rayons X en signal électrique. L’intégration de ce matériau dans des dispositifs imageurs permettra d’améliorer la résolution spatiale des radiographies et d’augmenter le signal, donc de mieux traiter les patients. Les prototypes d’imageurs X fabriqués au CEA permettent déjà d’obtenir des images radiographiques mais leur performances sont limités par l’instabilité temporelle du courant dans le matériau détecteur.
Votre travail consistera à étudier théoriquement et expérimentalement les mécanismes responsables du gain de photoconduction et de la dérive du photocourant dans des couches pérovskites épaisses. Pour cela vous devrez adapter les bancs de caractérisations electro-optiques de notre laboratoire et analyser les données collectées. Vous aurez également l’opportunité de réaliser des caractérisations avancées dans le cadre de collaborations avec des laboratoires spécialisés en France et à l’étranger. Les résultats de cette thèse permettront d’avancer dans la compréhension du matériau et de guider son élaboration pour réaliser des imageurs X performants.
Développement de sources de photons multiplexées pour les technologies quantiques
Les technologies de l’information quantique offrent de nombreuses promesses notamment dans le domaine du calcul et des communications sécurisées. Parmi la diversité de technologies possibles, les qubits photoniques, du fait de leur excellente robustesse à la décohérence sont particulièrement intéressants pour les communications quantiques, y compris à température ambiante. Ils offrent également une alternative à d’autres technologies de qubits dans le cadre du calcul quantique. Afin de déployer à grande échelle ces applications, il est nécessaire de disposer de dispositifs compacts, bon marché, en grand nombre. La photonique sur silicium est une plate-forme attractive pour parvenir à cet objectif, en implémentant différents composants clé de génération, manipulation et détection de qubits photoniques.
La génération de photons à l’état solide peut se faire par différents processus physiques. Parmi ceux-là, la génération non-linéaire de paires de photons présente différents attraits tels que le fonctionnement à température ambiante, la possibilité d’utiliser la paire de photons comme source de photons uniques annoncés, sources de paires de photons intriqués…
Votre rôle consistera à travailler au développement, au suivi de fabrication et à la caractérisation en laboratoire de sources de photons paramétriques multiplexée dans des matériaux à base de silicium afin de surpasser les limites inhérentes au processus physique de génération de paires de photons. Dans l’objectif d’une intégration complète sur une unique puce, il est notamment essentiel de pouvoir filtrer efficacement la lumière indésirable, afin de ne garder que les photons d’intérêt. C’est pourquoi un accent particulier sera également mis sur ces filtres.