Contrôle de manipulateur mobile à haute mobilité en contexte dynamique

Le développement de manipulateur mobile capable de capacités d’adaptation est porteur d’avancées importantes pour le développement de nouveaux moyens de production, que ce soit dans des applications industrielles ou agricoles. En effet de telles technologies permettent de réaliser des tâches répétitives avec précision et sans contraintes liées à la limitation de l’espace de travail. Néanmoins, l’efficience de tels robots est soumise à leur adaptation à la variabilité du contexte d’évolution et de la tâche à réaliser. Aussi, cette thèse propose de concevoir des mécanismes d’adaptation des comportements sensori-moteurs pour ce type de robots, afin de garantir une bonne adéquation de leurs actions en fonction de la situation. Elle envisage d’étendre les capacités de reconfiguration des approches de perception et de commande par l’apport de l’Intelligence Artificielle, ici comprise au sens de l’apprentissage profond. Il s’agira de développer de nouvelles architectures décisionnelles capables d’optimiser les comportements robotiques pour la manipulation mobile dans des contextes évolutifs (notamment intérieur-extérieur) et la réalisation de plusieurs travaux de précision.

Passage à l’échelle du jumeau numérique réseau dans les réseaux de communication complexes

Les réseaux de communication connaissent aujourd’hui une croissance exponentielle à la fois en termes de déploiement d’infrastructures réseau (notamment ceux des opérateurs à travers l’évolution progressive et soutenue vers la 6G), mais aussi en termes de machines, couvrant un large éventail d’équipements allant des serveurs Cloud aux composants IoT embarqués légers (ex. System on Chip : SoC) en passant par les terminaux mobiles comme les téléphones intelligents (smartphones).

Cet écosystème est aussi riche en équipements qu’en composants logiciels allant de l’application (ex. Audio/Vidéo streaming) jusqu’aux protocoles des différentes couches de communication réseau. De plus, un tel écosystème, lorsqu’il est opérationnel, se trouvera en perpétuel changement dont la nature peut être explicitée dans ce qui suit :
- Changement dans la topologie réseau : en raison, par exemple de défaillances matérielles ou logicielles, mobilité des utilisateurs, politiques de gestion des ressources réseau de l’opérateur, etc.
- Changement dans le taux d’utilisation/consommation des ressources réseau (bande passante, mémoire, CPU, batterie, etc.) : en raison des besoins des utilisateurs et des politiques de gestion des ressources réseau de l’opérateur, etc.

Pour assurer une supervision, ou plus généralement, une gestion efficace, qu'elle soit fine ou synthétique, des réseaux de communication, divers services/plateformes de gestion de réseau, tels que SNMP, CMIP, LWM2M, CoMI, SDN, ont été proposés et documentés dans la littérature sur les réseaux et organismes de normalisation. Par ailleurs, de telles plates-formes de gestion ont été largement adoptées notamment par les opérateurs réseau et par l’industrie de manière générale. D’ailleurs, cette adoption intègre souvent des fonctionnalités avancées, notamment des boucles de contrôle automatisées (par exemple, des systèmes experts ou des systèmes basés sur l’apprentissage automatique), améliorant ainsi la capacité des plateformes à optimiser les performances des opérations de gestion du réseau.

Cependant, malgré l’exploration et l’exploitation intensives des plateformes de gestion réseau, ces plateformes ne garantissent pas toujours une (re)configuration sans risque/erreur intrinsèque, dans des cas d’usage assez communs et critiques comme l’optimisation temps-réel du réseau, l’analyse de tests en mode opérationnel (what-if analysis), la planification des mises à jour/modernisations/extensions du réseau de communication, etc. Pour de tels scénarios, un nouveau paradigme de gestion réseau s’avère nécessaire.

Pour traiter les problématiques présentées dans la section précédente, la communauté scientifique a commencé à explorer l’adoption du concept de « jumeau numérique » pour les réseaux de communication, ce qui a donné naissance au paradigme du jumeau numérique réseau (Network Digital Twin : NDT). Le NDT est un jumeau numérique du réseau réel/physique (Physical Twin Network : PTN) ou l’on peut manipuler, sans risque, une copie numérique du vrai réseau, ce qui permet notamment de visualiser/prédire l’évolution (ou le comportement, l’état) du réseau réel si telle ou telle configuration réseau devait être appliquée. Au-delà de cet aspect, le NDT et le PTN échangent des informations via une ou plusieurs interfaces de communication dans le but de maintenir une bonne synchronisation entre eux.

Cependant, mettre en place un jumeau numérique réseau (NDT) n’est pas une tache simple. En effet, la synchronisation PTN-NDT fréquente et en temps réel pose un problème de passage à l’échelle (scalability) lorsqu’il est question de réseaux complexes (ex. nombre d’entités réseau trop important, topologies très dynamiques, volume important d’informations par nœud/par lien réseau), où chaque information réseau est susceptible d’être rapportée au niveau du NDT (par exemple un très grand nombre d'entités réseau, des topologies très dynamiques, ou un grand volume d'informations par nœud/par lien réseau).

Divers travaux scientifiques ont tenté de traiter la question du jumeau numérique réseau (NDT). Dans ces travaux il est question de définir des scenarios, exigences et architecture du NDT. Cependant, la question du passage à l’échelle dans le NDT n’a pas été traitée dans la littérature.

L'objectif de cette thèse de doctorat est de traiter le problème de passage à l’échelle (« scalabilité ») des jumeaux numériques réseau en explorant de nouveaux modèles d'apprentissage automatique pour la sélection et la prédiction des informations réseau.

Défense des modèles d'analyse de scène contre les attaques adversaires

Dans de nombreuses applications, des briques d'analyse de scène comme la segmentation sémantique, la détection et la reconnaissance d'objets, ou la reconnaissance de pose, sont nécessaires. Les réseaux de neurones profonds sont aujourd'hui parmi les modèles les plus efficaces pour effectuer un grand nombre de tâches de vision, parfois de façon simultanée lorsque l'apprentissage profond est multitâches. Cependant, il a été montré que ceux-ci étaient vulnérables face aux attaques adversaires (adversarial attacks): En effet, il est possible d'ajouter aux données d'entrée certaines perturbations imperceptibles par l'oeil humain qui mettent à mal les résultats lors de l'inférence faite par le réseau de neurones. Or, une garantie de résultats fiables est capitale pour les systèmes de décision où les failles de sécurité sont critiques (ex : applications comme le véhicule autonome, la reconnaissance d’objets en surveillance aérienne, ou la recherche de personnes/véhicules en vidéosurveillance). Différents types d'attaques adversaires et de défense ont été proposés, le plus souvent pour le problème de classification (d'images notamment). Quelques travaux ont abordé l'attaque des plongements qui sont optimisés par apprentissage de métrique pour les tâches de type ensemble-ouvert comme la réidentification d'objets, la reconnaissance faciale ou la recherche d'images par le contenu. Les types d'attaques se sont multipliés, qu'il s'agisse d'attaques universelles ou optimisées sur une instance particulière. Les défenses proposées doivent faire face à de nouvelles menaces sans trop sacrifier les performances initiales du modèle. La protection des données d'entrée face aux attaques adversaires est capitale pour les systèmes de décision où les failles de sécurité sont critiques. Un moyen de protéger ces données est de développer des défenses contre ces attaques. L'objectif sera donc d'étudier et de proposer différentes attaques et défenses applicables aux briques d'analyse de scène, notamment celles de détection d'objets et de recherche d'instance d'objet dans les images.

Apprentissage des modèles du monde pour les agents autonomes avancés

Les modèles du monde sont des représentations internes de l'environnement externe qu'un agent peut utiliser pour interagir avec le monde réel. Ils sont essentiels pour comprendre les lois physiques qui régissent les dynamiques du monde réel, faire des prédictions et planifier des actions à long terme. Les modèles du monde peuvent être utilisés pour simuler des interactions réelles et améliorer l'interprétabilité et l'explicabilité du comportement d'un agent dans cet environnement, ce qui en fait des composants clés pour les modèles avancés d'agents autonomes.

Néanmoins, la construction d'un modèle du monde précis reste un défi. L'objectif de cette thèse de doctorat est de développer une méthodologie pour apprendre les modèles du monde et étudier leur utilisation dans le contexte de la conduite autonome, en particulier pour la prévision des mouvements et le développement d'agents autonomes pour la navigation.

Accélération de simulations thermo-mécaniques par Réseaux de Neurones --- Applications à la fabrication additive et la mise en forme des métaux

Dans un certain nombre d'industries telle que la mise en forme des métaux ou la fabrication additive, l'écart entre la forme désirée et la forme effectivement obtenue est important, ce qui freine le développement de ces méthodes de fabrication. Cela est dû en bonne partie à la complexité des processus thermiques et mécaniques en jeu, difficiles à simuler à des fins d’optimisation du fait du temps de calcul important de la simulation des phénomènes en jeu.

La thèse vise à réduire significativement cet écart grâce à l'accélération des simulations thermo-mécaniques par éléments finis, notamment via le design d'une architecture de réseau de neurones adaptée, en s'appuyant sur les connaissances physiques théoriques.

Pour mener à bien ce sujet, la thèse bénéficiera d'un écosystème favorable aussi bien au LMS de l'École polytechnique qu'au CEA List : architecture PlastiNN développée en interne (brevet en cours de dépôt), bases de données mécanique existantes, supercalculateur FactoryIA et DGX, machine d'impression 3D. Il s'agira dans un premier temps de générer des bases de données à partir de simulations éléments finis thermo-mécaniques, puis d'adapter PlastiNN à apprendre de telles simulations, avant de mettre en œuvre des procédures d'optimisation s'appuyant sur ces réseaux de neurones.

L'objectif final de la thèse est d'illustrer l'accélération de simulations éléments finis ainsi obtenue sur des cas réels : d'une part par l'instauration d'une rétroaction durant l'impression métallique via la mesure du champ de température pour réduire l'écart entre géométrie désirée et géométrie fabriquée, d'autre part par la mise en place d'un outil de commande de forge qui permet d'arriver à une géométrie désirée à partir d'une géométrie initiale. Les deux applications s'appuieront sur une procédure d'optimisation rendue réalisable par l'accélération des simulations thermo-mécaniques.

Top