Algorithmes d’intelligence artificielle générative pour comprendre et contrer la polarisation en ligne

Les plateformes en ligne permettent une large diffusion de l'information, mais leurs modèles économiques centrés sur l'engagement des utilisateurs favorisent souvent la diffusion de contenus politiques idéologiquement homogènes ou controversés. Ces modèles peuvent conduire à la polarisation des opinions politiques et entraver le bon fonctionnement des systèmes démocratiques. Cette thèse étudiera des modèles génératifs d'IA innovants conçus pour comprendre en profondeur la polarisation politique et pour contrer ses effets. Elle mobilisera plusieurs sous-domaines de l'intelligence artificielle : l'apprentissage génératif, l'IA frugale, l'apprentissage continu et l'apprentissage multimédia. Les avancées seront associées aux défis suivants :
-la modélisation de la polarisation politique et l’utilisation du modèle obtenu pour guider les algorithmes d'IA mis en oeuvre ;
-la collecte et le nettoyage de données politiques multimodales massives et diversifiées pour assurer une couverture thématique et temporelle, et la création d’un espace de représentation sémantique commun ;
-la proposition de modèles génératifs orientés politique afin d'encoder les connaissances du domaine de manière efficace et efficiente et de générer des données d'entraînement pour les tâches aval ;
-la spécialisation des modèles pour les tâches spécifiques nécessaires à une compréhension fine de la polarisation (détection de thèmes, reconnaissance d’entités, analyse de sentiments) ;
-la mise à jour continue des modèles génératifs et des tâches spécifiques à la polarisation pour suivre la dynamique des événements et des nouvelles politiques.

Contrôle de manipulateur mobile à haute mobilité en contexte dynamique

Le développement de manipulateur mobile capable de capacités d'adaptation est porteur d'avancées importantes pour le développement de nouveaux moyens de production, que ce soit dans des applications industrielles ou agricoles. En effet de telles technologies permettent de réaliser des tâches répétitives avec précision et sans contraintes liées à la limitation de l'espace de travail. Néanmoins, l'efficience de tels robots est soumise à leur adaptation à la variabilité du contexte d’évolution et de la tâche à réaliser. Aussi, cette thèse propose de concevoir des mécanismes d'adaptation des comportements sensori-moteurs pour ce type de robots, afin de garantir une bonne adéquation de leurs actions en fonction de la situation. Elle envisage d'étendre les capacités de reconfiguration des approches de perception et de commande par l'apport de l'Intelligence Artificielle, ici comprise au sens de l'apprentissage profond. Il s'agira de développer de nouvelles architectures décisionnelles capables d'optimiser les comportements robotiques pour la manipulation mobile dans des contextes évolutifs (notamment intérieur-extérieur) et la réalisation de plusieurs travaux de précision.

L'apprentissage de la manipulation fine et dextre par la vision et les observations kinesthésiques

La manipulation robotique fine et dextre pose des défis importants en raison de la nécessité d'une manipulation d'objets précise, de la coordination des forces de contact et de l'utilisation des observations visuelles. Cette recherche vise à relever ces défis en examinant l'intégration des capteurs visuels et kinesthésiques et des techniques sim2real. L'objectif est de développer des algorithmes et des modèles de bout en bout qui permettent aux robots de manipuler des objets avec une précision et une adaptabilité exceptionnelles. La recherche se concentrera sur l'apprentissage à partir de données à grande échelle, le transfert de connaissances des simulations aux scénarios du monde réel et la généralisation efficiente par le réglage fin à faible échantillonnage.

Top