Optimisation de l’estimation de la masse de matière nucléaire par méthodes statistiques avancées

Afin de se conformer aux normes de sécurité et de sûreté relatives au stockage des déchets nucléaires et aux traités de non-prolifération, les producteurs de déchets contenant de l'uranium ou du plutonium ont souvent besoin de mesurer la quantité de matières nucléaires dans leurs déchets radioactifs. La caractérisation radiologique des matières nucléaires par mesure neutronique passive et active est l'une des activités de recherche historiques du Laboratoire de Mesures Nucléaires (LMN) du CEA/IRESNE de Cadarache.

Les compteurs proportionnels remplis de 3He ou recouverts de bore sont les détecteurs de référence utilisés pour ces techniques qui constituent des outils de référence pour la mesure du plutonium ou de l’uranium. En mesure passive, la coïncidence neutronique permet de discriminer les événements de fission spontanée associés notamment au 240Pu des neutrons issus des réactions (a, n). En mesure active, la technique d’interrogation neutronique active (DDT) fournit des informations sur la quantité d'isotopes fissiles à l'intérieur d'un colis de déchets.

Afin de réduire la sensibilité des techniques de mesures neutroniques aux effets d'atténuation de matrice et de localisation du contaminant, un des objectifs de la thèse est d’étudier le couplage de différents types de mesures, tels que la mesure voie par voie, la tomographie d’émission ou la radiographie RX haute énergie, dans un cadre de méthodes statistiques avancées. La thèse vise également à évaluer l’apport des méthodes statistiques avancées, tels que les algorithmes de régression, les approches bayésiennes (parmi lesquelles le processus gaussien), et les réseaux de neurones, pour réduire l’incertitude associée à la masse du plutonium.

Une attention particulière sera accordée au traitement des hétérogénéités de la matrice et de la distribution du contaminant radioactif. L'influence de ces hétérogénéités peut être particulièrement difficile à quantifier, nécessitant non seulement l'utilisation de méthodes statistiques avancées, mais aussi une étude expérimentale approfondie à l’aide du poste de mesure neutronique SYMETRIC du CEA/IRESNE.

Les travaux de thèse seront réalisés au Laboratoire de Mesures Nucléaires du CEA/IRESNE de Cadarache, qui est un laboratoire métier, expert dans les méthodes non-destructives de caractérisation radiologique, élémentaire et physique d’objets qu’ils soient radioactifs ou non. Il est doté de plateformes technologiques de premier plan, implantés dans l’installation TOTEM (mesures neutroniques et gamma) et l’INB Chicade (plateformes SYMETRIC en mesure neutronique et CINPHONIE pour l’imagerie RX de haute énergie). Enfin, le doctorant évoluera dans un environnement collaboratif où les différentes équipes sont en forte interaction les unes avec les autres.

Etude du fluage d’assemblage de combustible en interaction fluide-structure

Dans le contexte de la transition énergétique et du mix décarboné, la maîtrise de la performance et de la sûreté des réacteurs nucléaires du parc est un impératif ouvrant encore des voies de recherche et développement à forte valeur ajoutée. Ceci est notamment vrai pour l’optimisation des éléments combustibles.
En effet, au cours de son séjour dans le cœur d’un réacteur de puissance, l’assemblage de combustible est soumis à des contraintes mécaniques, thermiques et hydrauliques. Il subit une évolution de sa géométrie, notamment un allongement et une déformation latérale, en raison du phénomène de fluage lié conjointement à l’irradiation et à l’écoulement d’eau dans le cœur. Avec l’accroissement des temps de séjour des assemblages combustibles dans les réacteurs et du fait des conditions de plus en plus sollicitantes, le besoin de compréhension du phénomène est nécessaire pour améliorer la robustesse de la conception. Il s’agit en particulier d’un problème d’interaction fluide-structure où l’écoulement joue un rôle dans le comportement du fluage de la structure et où la déformation de la structure modifie l’écoulement.
Une précédente étude a permis de mettre en œuvre un dispositif expérimental pour obtenir un fluage rapide sur des maquettes d’assemblages de combustible à échelle réduite. Ces essais ont pu mettre en évidence un effet important des conditions d’entrée du fluide sur le comportement sous fluage des assemblages. L’objectif du travail de thèse proposé est alors d’analyser les résultats expérimentaux à l’aide d’outils de simulations afin de comprendre et de quantifier la phénoménologie du couplage en interaction fluide structure sous fluage. Cette analyse pourra mener à la réalisation d’essais supplémentaires. Un autre aspect important sera la transposabilité des résultats aux conditions réelles.
La thèse se déroulera à l’institut IRESNE du centre de Cadarache, en collaboration avec l’industriel Framatome, apportant sa vision opérationnelle dans le suivi et l’orientation des travaux de recherche. Le travail proposé ouvre de ce fait des perspectives solides à l’issue de la thèse aussi bien dans les centres de recherche qu’en environnement industriel.

Couplage entre transfert de masse et hydrodynamique diphasique : investigation expérimentale et validation/calibration de modèles

Dans le contexte de la transition énergétique et de la place cruciale du nucléaire dans un mix énergétique décarboné, comprendre, puis atténuer les conséquences de tout accident conduisant à fusion, même partielle, du cœur d’un réacteur représente une direction de recherche impérative.

Lors d'un accident avec fusion du cœur, un bain de matière en fusion, appelée corium, peut se former en fond de cuve. La composition du bain peut évoluer au cours du temps. Le bain de corium n'est pas homogène et peut se stratifier en plusieurs phases immiscibles. Avec l'évolution de la composition globale du corium, les propriétés des différentes phases évoluent. Ainsi l'ordre de stratification vertical des phases peut changer, ce qui induit un réarrangement vertical des phases. Lors de ce réarrangement une phase traverse l'autre sous forme de gouttes. L'ordre des phases ainsi que leurs mouvements sont de première importance car ils influencent grandement les flux thermiques transmis à la cuve. Mieux comprendre ces phénomènes permets d'améliorer la sûreté et le design autant des réacteurs actuels que futures.

Des premières modélisations ont déjà été réalisées, mais elles manquent de validation et de calibration. Les expériences prototypiques sont difficiles à mettre en place et à court terme aucune n'est prévue. Le présent sujet de thèse propose de combler ce manque en réalisant une étude expérimentale du phénomène à l'aide d'un système simulant à base d'eau permettant une instrumentation locale et de grandes campagnes d'essai. Le but est de valider, calibrer les modèles existants, voire en développer de nouveaux, avec en ligne de mire la possibilité de capitaliser ces résultats dans la plateforme logiciel PROCOR, qui est utilisée pour réaliser des estimations de probabilité de percement de la cuve d'un réacteur. Le dispositif expérimental serait construit et opéré au laboratoire LEMTA de l'université de Lorraine où le doctorant serait détaché. En termes d'expériences, deux cas seront à étudier, le cas goutte seule, et le cas stratifié avec formation de goutte via instabilités de Rayleigh-Taylor.

La thèse sera principalement expérimentale avec un volet utilisation de code pour le calage, la validation et pourra inclure un volet modélisation. Elle se déroulera dans son intégralité au laboratoire LEMTA à Nancy. Le doctorant profitera ainsi des compétences du LEMTA en ce qui concerne le développement de dispositifs expérimentaux simulants, les transferts dans les fluides et la métrologie. Il sera intégré à un environnement dynamique composé de chercheurs et d'autres doctorants. Le candidat devra avoir des connaissances en phénomènes de transferts (de masses notamment), ainsi qu'une appétence certaine pour les sciences expérimentales.

Compréhension locale de l’interface corium-béton par expérimentation

Dans le contexte de la transition énergétique et de la place cruciale du nucléaire dans un mix énergétique décarboné, comprendre, puis atténuer les conséquences de tout accident conduisant à fusion, même partielle, du cœur d’un réacteur représente une direction de recherche impérative.
Lors d’un accident grave avec fusion du cœur, l’amalgame de matériaux issus de la fusion du cœur, ou corium, peut interagir avec le béton du radier de la centrale. La méconnaissance des phénomènes physiques locaux et interfaciaux lors de l’interaction corium-béton (ICB) a conduit à l’élaboration de différents outils internationaux de simulation. Aucun n’a réussi à expliquer les récentes observations sur la centrale accidentée de Fukushima Daiichi. Il s’avère donc crucial d’améliorer les outils de simulation de l’ICB.
Ainsi, ce sujet de thèse a pour objet l’étude expérimentale, détaillée et locale, de l’interface corium/béton avec du corium prototypique (uranium appauvri). Pour cela, le candidat élaborera un dispositif d’essai qui sera introduit dans le four inductif VITI de la plateforme PLINIUS dédiée à l’étude des accidents graves sur le centre de Cadarache. Après la qualification du dispositif expérimental, des essais locaux d’interaction corium béton dans VITI seront réalisés sur différents types de béton (dont un échantillon de Fukushima) et avec différents coriums, permettant une approche incrémentale par effets séparés. L’ablation sera caractérisée via la perte de masse et le relâchement d’hydrogène. L’interface sera aussi caractérisée après rapide retrait du corium. Les échantillons seront également étudiés aux rayons X (e.g. tomographie). Suivant l’avancement des travaux et la compréhension de la phénoménologie de l’ICB, un modèle pourra être développé, puis intégré dans un outil de simulation.
Le travail de thèse se déroulera conjointement dans les laboratoires d’expérimentation et de modélisation des accidents graves de l’institut IRESNE de Cadarache, dans un environnement de recherche au meilleur niveau international pour l’étude des phénomènes multiphysiques à très haute température. Ce travail pourra aussi s’enrichir des travaux recherche réalisés dans le cadre de l’ANR IMMOC, en partenariat avec des universitaires (CNRS Laboratoire Navier, AMU-CNRS Madirel…).

fragmentation d'un jet liquide contre un obstacle : application aux feux de sodium pulvérisés

Les feux de sodium pulvérisés (FSP), engendrés par une fuite dans une canalisation sodium, constituent un risque à considérer pour la sûreté des RNR-Na. Les principales conséquences de ces feux sont la montée en pression et en température des locaux impactés ainsi que la génération d’un terme source chimique susceptible d’être relâché dans l’environnement.
Le phénomène clé de l’étude des FSP est la fragmentation du jet de sodium liquide contre un obstacle (paroi verticale ou plafond). Ce mode de fragmentation doit être précisément examiné en portant une attention particulière sur la population de gouttes générée lors de l’impact.
Pour cela, le LESC (CEA-Cadarache) prépare une boucle expérimentale mettant en jeu un jet d’eau impactant une surface horizontale ou verticale. Le travail de thèse comprendra :
- La réalisation des essais de fragmentation de jet en faisant varier le diamètre du jet, sa vitesse et son orientation ;
- L’analyse des images de deux caméras rapides à l’aide d’un logiciel CEA et d’extraire les distributions en taille et en vitesse des gouttes ;
- le proposition d'un modèle représentant la fragmentation du jet sur obstacle et la population de gouttes résultante ;
- l'implémentation de ce modèle dans le logiciel CEA de CFD canoP ;
- la validation du modèle à l’aide de l’analyse des images des essais.

Top