Amélioration des performances des CMOS par l’optimisation conjointe de la lithographie et du design
Lors du développement de nouvelles technologies (ex. FDSOI 10nm), les règles de dessin constituent le « code de la route » du designer (DRM). Elles sont définies afin de prendre en compte les contraintes électriques - physiques des circuits ainsi que celles issues des procédés de patterning et de lithographie en particulier. Le monde des designers et celui des lithographes étant relativement séparé, ces règles de dessin ne sont souvent pas optimales (sous-estimation des capabilités de lithographie, méconnaissance de l’impact des règles sur les performances des CMOS).
L’objectif de cette thèse est de montrer que l’utilisation d’un jumeau numérique de lithographie peut permettre d’améliorer les performances des CMOS par co-optimisation du design et de la lithographie (DTCO).
Sur la base d’un cas pratique des technologies CMOS avancées et à l’aide d’un jumeau numérique de lithographie, il s’agira de
- Développer de nouvelles méthodes de caractérisation du domaine de validité d’un procédé de lithographie (hotspot prédiction)
- Confronter la pertinence des règles de dessin vis-à-vis de ce domaine de validité
- Quantifier l’impact de la lithographie au travers des règles de dessin sur les performances électriques des dispositifs.
- Identifier les limitations process ou design les plus significatives afin de les challenger
La thèse se déroulera au CEA-Leti à Grenoble, acteur reconnu pour l’excellence de ses travaux de recherche dans le domaine de la microélectronique. Plus précisément, l’étudiant(e) sera rattaché(e) au Laboratoire de PAtterning Computationnel (LPAC) qui explore l’amélioration des procédés de lithographie et de gravure en s’appuyant sur des outils numériques les plus avancés. L’étudiant aura accès à ces outils ainsi qu’aux moyens de caractérisation et de fabrication 300mm de la salle blanche du CEA-Leti. L’étudiant(e) sera amené(e) à publier et à partager ses travaux lors de différentes conférences internationales.
Rôle de l'eau à l'interface d'un collage direct hydrophile
L'industrie microélectronique utilise de plus en plus la technologie du collage direct hydrophile pour réaliser des substrats et des composants innovants. Les équipes du CEA LETI sont leaders dans ce domaine depuis plus de 20 ans et proposent des études scientifiques et technologiques sur le sujet.
Le rôle clé de l'eau à l'interface de collage peut être mieux compris grâce à une nouvelle technique de caractérisation développée au CEA LETI. L'objectif de cette thèse est de confirmer ou d'infirmer les mécanismes physico-chimiques en jeu à l'interface de collage, en fonction des préparations de surface et des matériaux en contact.
Une grande partie de ce travail sera réalisée sur nos outils en salle blanche. La caractérisation de l'hydratation des surfaces par cette technique originale sera complétée par des caractérisations classiques telles que les mesures d'énergie d'adhésion et d'adhérence, les analyses FTIR-MIR et SIMS, et la réflectivité des rayons X à l'ESRF.
Croissance MOCVD de films 2D ferroélectriques In2Se3 pour mémoires non-volatiles haute densité et basse consommation
Les matériaux ferroélectriques à température ambiante sont l’élément clé des mémoires non-volatiles haute densité et basse consommation. Cependant, avec la miniaturisation accrue des dispositifs électroniques, les ferroélectriques conventionnels sont limités à une épaisseur critique en dessous de laquelle la ferroélectricité est instable. Les matériaux bidimensionnels (2D) grâce à leur chimie de surface saturée et leurs faibles interactions inter-couches présentent l’avantage d’être stables à la limite de la monocouche atomique et sont donc prometteurs pour explorer la ferroélectricité dans des épaisseurs nanométriques et sub-nanométriques. Jusqu’à présent, les preuves de concept démontrant la ferroélectricité 2D ont principalement utilisé des cristaux de quelques µm2 exfoliés mécaniquement à partir d’un cristal massif. En particulier, les phases ? et ? du semiconducteur lamellaire In2Se3 préservent un caractère ferroélectrique à la limite de la monocouche atomique.
Compte tenu de l’impératif des applications « wafer-scale » de la microélectronique, il y a aujourd’hui un besoin urgent de croissance de matériaux 2D de haute qualité cristalline sur des substrats de grande dimension. L’objectif de la thèse est de développer la croissance du matériau lamellaire In2Se3 dans ses phases non centro-symmétriques ? ou ? par épitaxie en phase vapeur par procédé chimique (MOCVD) sur des substrats de silicium de grande dimension (200 mm). A notre connaissance, seulement trois articles de la littérature démontrent la croissance MOCVD du composé In2Se3. Un seul met en évidence l’obtention de la phase ? (article de 2024). Le défi est donc difficile mais possible. La preuve de concept d’une cellule mémoire ferroélectrique sera réalisée si possible in fine en déposant directement une électrode métallique en surface du matériau ferroélectrique 2D sans endommager ce-dernier
Caractérisation chimique 3D de dispositifs ePCM par tomographie STEM-EDX et intelligence artificielle
Cette thèse s'inscrit dans le contexte du progrès récent de la technologie des mémoires à changement de phase dans les applications embarquées (ePCM). La miniaturisation des ePCM pour des nœuds inférieurs à 18nm pose de nombreux défis non seulement dans la fabrication, mais aussi dans la caractérisation physico-chimique de ces dispositifs. L'objectif du projet est d'étudier les phénomènes de ségrégation chimique et de cristallisation en 3D dans les nouveaux alliages PCM intégrés dans des dispositifs ePCM planaires et verticaux, en utilisant la tomographie électronique en mode STEM-EDX (et 4D-STEM). Compte tenu de l'extrême miniaturisation et de la géométrie complexe des dispositifs, l'accent sera mis sur l'optimisation des conditions expérimentales et sur l'application de techniques de machine learning et d'apprentissage profond pour améliorer la qualité et la fiabilité des résultats 3D obtenus. Une corrélation avec le comportement électrique du dispositif sera effectuée pour mieux comprendre les phénomènes à l'origine des défaillances après endurance et après perte de données à haute température.
Un TEM NeoARM Cold-FEG corrigé par sonde (60kV-200kV) sera utilisé pour l'acquisition des données tomographiques. Il est équipé de deux détecteurs SSD à grand angle solide (JEOL Centurio), d'un filtre en énergie CEOS (CEFID) et d'une caméra à détection directe (Timepix3). Le candidat aura également accès aux codes Python développés en interne ainsi qu'aux ressources informatiques nécessaires pour effectuer l'analyse des données spectrales et tomographiques.
Emission TeraHertz dans des puits quantiques topologiques HgTe/CdTe
Les sources de lumières cohérentes dans le domaine TeraHertz sont aujourd’hui inexistantes. Le graphène a été proposé pour réaliser de telles sources en utilisant les transitions entre niveaux de Landau sous champ magnétique mais l’équidistance énergétique entre ces niveaux ne permet pas d’écarter les recombinaisons non-radiatives de type Auger. Une nouvelle classe de matériaux, les isolants topologiques, permet de contourner ce problème en modifiant la répartition de ces niveaux de Landau par ouverture d’un gap, tout en conservant un système électronique de Dirac. HgTe/CdTe fait partie de ces isolants topologiques avec des mises en évidence expérimentales très claires de ces effets et des propriétés de transport électronique uniques. Nous proposons de réaliser des puits quantiques HgTe/CdTe en se plaçant au voisinage de la transition topologique. Nous avons récemment démontré expérimentalement l’émission Terahertz à partir de transitions de Landau avec un simple puits quantique. La problématique de la thèse consiste à optimiser l’épitaxie de ce système HgTe/CdTe et réaliser des empilements à multiples puits de façon à augmenter le gain. Ces multipuits devront être placés dans une cavité optique adaptée, à base de miroirs métalliques. Les électrons de Dirac devront également être polarisés par effet de grille pour ajuster les positions énergétiques des niveaux de Landau et contrôler leur population. Les procédés micro-électroniques seront employés pour y parvenir. Enfin, les propriétés d’émission TeraHertz seront déterminées précisément par spectroscopie magnéto-optique.
L’ensemble du travail de thèse conduira à préciser le potentiel de ce nouveau type de matériau pour des applications aux lasers TeraHertz et si possible à en faire une première démonstration.
Développement des procédés de gravure pour les nœuds avancés utilisant des techniques SADP
La miniaturisation des composants électroniques impose le développement de nouveaux procédés, car la lithographie immersion 193nm seule ne permet plus d’atteindre les dimensions demandées pour les nœuds technologiques les plus avancés (sub-10nm). Depuis des années, des stratégies complémentaires à la lithographie se sont développées. Ici, nous étudierons la technique de « Self-Aligned Double Patterning » (SADP), qui divise par deux le pas du réseau des motifs lithographiés initialement. Cette technique repose sur un dépôt conforme de diélectrique (espaceur) de part et d’autre des motifs initiaux (mandrel). Ces espaceurs serviront ensuite de masque de gravure pour l'obtention des motifs finaux. Les faibles dimensions recherchées imposent un contrôle parfait des procédés de gravure. Or cette étape altère les matériaux déposés conduisant à une perte des dimensions. Un des grands enjeux sera de maîtriser la gravure et donc la modification des matériaux utilisés pour satisfaire les spécifications recherchées (largeur des motifs, profil de gravure, consommation des couches d’arrêt, uniformité, vitesse de gravure…). Un des objectifs sera aussi de proposer des approches SADP alternatives permettant de générer différents types de motifs sur la plaque pour réaliser des transistors planaires FDSOI, ce qui est peu répandu actuellement dans la littérature.
Les défis de cette thèse ?
Développer des procédés innovants de gravure
Explorer de nouveaux couples de matériaux (espaceur/mandrel) et proposer in-fine une solution d’intégration industrielle qui pourra être validée électriquement.
Identifier les possibles verrous technologiques et proposer des solutions pour les contourner
Mettre en place un protocole de caractérisation fiable détectant les modifications physico-chimiques des matériaux en présence et la dimension des motifs finaux
Etude de l’effet de l’activation plasma sur la fiabilité des intégrations hybrides Cu/SiO2
Au cours des dernières années, le CEA-LETI s’est imposé comme un des principaux leaders mondiaux dans le développement de procédés pour l’industrie microélectronique avancée. En particulier, les procédés de collage hybride (HB) direct Cu/SiO2 plaque à plaque, une technologie de plus en plus utilisée pour la fabrication de dispositifs compacts, performants et multifonctionnels. Chaque plaque contient des circuits intégrés enterrés sous une couche contenant des plots électriques en Cu dans une matrice de SiO2. L’assemblage des plaques par collage directe consiste en la mise en contact de surfaces très propres. L’adhésion est assurée par la création spontanée de liaisons atomiques à l’interface de collage. Afin d’assurer une bonne tenue mécanique de la structure, il est indispensable d’activer la surface avant collage. Plusieurs approches ont été développées mais l’activation par plasma N2 reste la plus utilisée dans l’industrie. Cependant, l’utilisation de ce procédé reste controversée à cause des effets indésirables qu’il peut induire : 1/ la formation de nodules de Cu à l’interface de collage entre les plots métalliques et 2/ le dépôt d’espèces chimiques au niveau de l’interface Cu-Cu. Ces effets peuvent être préjudiciables aux propriétés électriques et à la fiabilité des dispositifs (claquage diélectrique en particulier). En collaboration avec STMicroelectronics et IM2NP, nous souhaitons étudier les différents mécanismes mis en jeu afin de pouvoir proposer un procédé d’activation assurant à la fois tenue mécanique et fiabilité de nos intégrations.
Dynamique de fracture dans des technologies de transfert de couches cristallines
Le Smart Cut™ est une technologie découverte au CEA et désormais utilisée industriellement pour la fabrication de substrats avancés pour l'électronique. Cependant, les phénomènes physiques mis en jeu dans sa mise en œuvre font encore l'objet de nombreuses études au CEA. Dans le Smart Cut™, une fine couche de matériau est transférée d'une plaquette à l'autre en utilisant une étape clé de recuit de fracture durant laquelle une fracture macroscopique s'initie et se propage à plusieurs km/s [i].
____________
L'amélioration de la technologie nécessite une solide compréhension des phénomènes physiques impliqués dans l'étape de fracture. L'objectif de ce projet de doctorat est donc d'étudier les mécanismes impliqués dans l'initiation et la propagation des fractures, ainsi que les vibrations post-fracture.
____________
Sur le site du CEA-Grenoble, avec un intérêt industriel, l'étudiant utilisera et développera les dispositifs expérimentaux existants pour étudier le comportement de la fracture dans les matériaux fragiles, y compris les réflexions laser optiques [iv], l'imagerie synchrotron diffractante résolue dans le temps [iii], et l'imagerie directe ultra-rapide [ii].
En outre, des algorithmes d'analyse de données basés sur python seront développés pour extraire des informations quantitatives des différents ensembles de données. Cela permettra à l'étudiant de déterminer les mécanismes impliqués et d'évaluer l'influence des paramètres de traitement des plaquettes sur le comportement de la fracture, et donc de proposer des méthodes d'amélioration.
Références :
[i] https://pubs.aip.org/aip/apl/article/107/9/092102/594044
[ii] https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024068
[ii] https://journals.iucr.org/j/issues/2022/04/00/vb5040/index.html
[iv] https://pubs.aip.org/aip/jap/article/129/18/185103/158396
Developpement de matériaux de barrière auto-formants pour interconnexions BEOL avancées
Contexte : Avec la miniaturisation des dispositifs électroniques et l'introduction de nœuds technologiques avancés inférieurs à 10 nm, la fiabilité des interconnexions en cuivre (Cu) devient un enjeu central pour maintenir les performances des dispositifs microélectroniques. Ces interconnexions doivent non seulement garantir une conductivité optimale, mais aussi résister à la diffusion et à la délamination. Traditionnellement, des barrières de diffusion à base de tantale (Ta/TaN) sont utilisées pour empêcher la diffusion du cuivre dans le diélectrique. Cependant, à mesure que les dimensions des dispositifs diminuent, l'incorporation de ces barrières devient de plus en plus complexe, même avec des techniques avancées comme le dépôt de couches atomiques (ALD), car l'épaisseur de la barrière doit être réduite à quelques nanomètres. Pour relever ce défi, une alternative prometteuse émerge avec les barrières auto-formantes (Self-Forming Barriers, SFB). Ce procédé utilise des alliages de cuivre enrichis en éléments tels que le manganèse (Mn), le titane (Ti), l'aluminium (Al) ou le zinc (Zn), qui migrent à l'interface Cu-dielectrique pour former une barrière ultra-fine. Cette solution simplifie le processus de fabrication tout en minimisant la résistance électrique des interconnexions.
Projet de thèse : Le candidat au doctorat rejoindra une équipe de recherche multidisciplinaire pour explorer et optimiser les matériaux pour la réalisation de SFBs en utilisant des alliages de Cu. Les axes principaux incluent :
• Sélection et caractérisation des matériaux : Développer et analyser des films minces d'alliages de Cu par des méthodes électrochimiques et/ou PVD pour étudier leur microstructure et leur morphology.
• Formation de barrière : Contrôler la migration des alliages à l'interface Cu/dielectrique lors de l'annealing thermique et évaluer l'efficacité de la barrière.
• Propriétés électriques et mécaniques : Évaluer l'impact des SFB sur la résistance électrique, l'électromigration et la délamination, en particulier lors de tests accélérés.
Compétences requises : Diplôme de Master en électrochimie ou en science des matériaux avec un fort intérêt pour la recherche appliquée. Un intérêt prononcé pour le travail expérimental, des compétences en dépôt de films minces, électrochimie et caractérisation des matériaux (AFM, SEM, XPS, XRD, SIMS). Vous devez être capable de mener des recherches bibliographiques et d'organiser votre travail de manière efficace.
Environnement de travail : Le candidat travaillera au sein d'une équipe pluridisciplinaire et aura accès à des installations de pointe de 200/300 mm, il participera au projet NextGen du CEA sur des interconnexions avancées pour des applications à haute fiabilité.
Structuration 3D complexes à base d’origamis d’ADN
L'évolution rapide des nouvelles technologies, telles que les voitures autonomes ou les énergies renouvelables, nécessite la réalisation de structures de plus en plus complexes. Pour cela, il existe aujourd’hui de nombreuses techniques de structuration de surface. En microélectronique, la lithographie optique est la méthode de référence permettant d’obtenir des motifs micro- et nanométriques. Cependant, elle reste limitée dans la diversité des formes réalisables.
Au cours des dernières années, une approche prometteuse a été développée au sein des laboratoires du CBS (INSERM à Montpellier) et CEA Leti (Grenoble) : l’assemblage des origamis d'ADN. Cette technologie exploite les propriétés d'auto-assemblage de cette chaine de polymères qu’est l’origami ADN. L’organisation des origamis d’ADN de taille nanométrique permet de former in fine des structures d’une dimension micrométrique. L'objectif de cette thèse est d'explorer de nouvelles perspectives en combinant des origamis 2D et 3D pour créer des structures inédites. Ces motifs pouvant présenter un grand intérêt pour des applications dans les domaines tel que l’optique ou encore l’énergie.