Optimisation de forme au service de l'innovation combustible

L’industrie nucléaire vise à développer des combustibles nucléaires toujours plus sûrs avec des combustibles appelés « Accident-Tolerant Fuel » [1]. Cela passe notamment par la conception de combustibles fonctionnant à relativement basse température (dit «froids ») en fonctionnement nominal, ce qui peut s’obtenir par l’ajout d’additifs très conducteurs.

L’objectif de la thèse est de développer des méthodes numériques (capitalisées dans un code semi-industriel), afin de pouvoir proposer de nouvelles «formes» de combustibles (le mot «forme» étant pris au sens de la structure interne ou de la microstructure), optimisées pour les phénomènes considérés. Pour ce faire, on utilisera des techniques mathématiques et numériques récentes liées à l’optimisation de forme [2].
L’étude commencera par une modélisation simple des phénomènes thermo-mécaniques [3]. Puis, un aller-retour entre l'implémentation de méthodes, les résultats obtenus et la modélisation physique sera nécessaire, afin de reformuler des problèmes physiques plus complexes sous une forme numériquement accessible.

Cette thèse se déroulera au CEA de Cadarache au sein du Département d’Etude des Combustibles, plus précisément du Laboratoire des Méthodes Numériques et Composants Physiques pour la plate-forme PLEIADES (LMCP). Ce département est rattaché à l'Institut IRESNE, l’Institut de REcherche sur les Systèmes Nucléaires pour la production d’Energie bas carbone. La thèse sera réalisée en collaboration avec une équipe de l’Université de Nice offrant ainsi un encadrement à la fois académique et en lien avec les problématiques industrielles. Elle s'inscrit plus largement dans le projet Fast-in-Fuels, au sein du Programme Prioritaire de Recherche PEPR DIADEM.

Le candidat sélectionné possèdera un solide bagage en calcul scientifique, en analyse et analyse numérique d’équations aux dérivées partielles, ainsi que des notions d’optimisation. Idéalement, il aura également des connaissances de base en thermique et mécanique des milieux continus. Le sujet proposé a un objectif appliqué ciblé, mais il possède une véritable composante exploratoire. Par ailleurs, il se trouve au carrefour de champs scientifiques variés. C’est pourquoi il sera attendu de l’étudiant en thèse de faire preuve de curiosité et créativité.

[1] Review of accident tolerant fuel concepts with implications to severe accident progression and radiological releases, 2020.
[2] G. Allaire. Shape optimization by the homogenization method, volume 146 of Applied Mathematical Sciences. Springer-Verlag, New York, 2002.
[3] T. Devictor. Manuscrit de thèse, 2025 (a paraître)

Etude expérimentale et simulation DEM du démélange de poudres d’actinides lors des opérations de transfert.

La fabrication des combustibles nucléaires à base d’oxydes d’actinides (UO2, PuO2) implique de nombreuses opérations de manutention de poudres, au cours desquelles peuvent survenir des phénomènes de ségrégation. Ces phénomènes, liés notamment aux différences de taille, de forme, de densité ou encore d’état de surface, influencent directement l’homogénéité des mélanges, et donc la qualité et la régularité des pastilles de combustible obtenues. Leur maîtrise constitue ainsi un enjeu industriel majeur pour garantir la robustesse des procédés et la conformité du produit final.
Cette thèse vise à approfondir la compréhension des mécanismes de démélange des poudres d’UO2 au cours des étapes de transfert, en particulier lors du transport par convoyeur vibrant et de la chute gravitaire. L’objectif scientifique principal est d’établir le lien entre les propriétés physiques et rhéologiques des poudres, les conditions opératoires du procédé, et l’intensité des phénomènes de ségrégation observés. Le travail combinera expérimentation et simulation numérique DEM afin d’identifier les paramètres matériaux et procédés influençant la ségrégation. Des dispositifs expérimentaux seront développés pour caractériser les poudres et évaluer l’intensité du démélange, tandis que les simulations permettront de valider et d’extrapoler les observations.
Réalisée au CEA Cadarache au sein du Laboratoire des combustibles Uranium (LCU) de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) en collaboration avec le laboratoire TIMR de l’UTC, ce projet permettra de proposer des recommandations pour limiter la ségrégation lors des opérations industrielles, et d’améliorer la prédiction de la propension à la ségrégation de mélanges de poudres, en particulier de poudres cohésives d’actinides.
Le doctorant valorisera ses résultats au travers des publications et participations à des congrès. Il aura l’occasion d’apprendre ou de se perfectionner dans plusieurs techniques réutilisables dans d’autres contextes, applicables à de nombreux domaines de la science des matériaux et de l’ingénieur. En particulier, les problématiques liées à la physique des milieux granulaires, qui constituent le cœur de cette thèse, présentent un intérêt industriel marqué et sont communes à de nombreux autres secteurs manipulant des poudres, tels que la pharmacie, l’agroalimentaire ou la métallurgie des poudres.

Effet de la porosité sur la conductivité thermique du matériau combustible MOX (U,Pu)O2

La performance des combustibles nucléaires dépend fortement de leur comportement thermomécanique, et donc de leur conductivité thermique. Cette propriété varie avec la microstructure du matériau qui peut présenter des hauts niveaux de porosité, notamment dans le cas des oxydes mixtes d’uranium et de plutonium utilisés dans les réacteurs rapides.

Le but de cette thèse est d’évaluer l’effet de la quantité et de la forme des pores sur la conductivité thermique de ces matériaux fissiles et de proposer une loi de conductivité thermique pour les MOX prenant en compte la quantité, la taille, la forme et l’interconnectivité de leur porosité. Pour ce faire, des mesures récentes de propriétés thermiques sont en cours de réalisation par des techniques performantes de chauffage laser permettant d’appréhender le comportement du combustible dans des domaines de température peu explorés à ce jour, à savoir les très hautes températures (typiquement jusqu’à 2800°C), dans le centre de recherche européen (JRC) à Karlsruhe. Ces mesures sont réalisées sur des matériaux présentant des microstructures différentes et seront comparés à des résultats obtenus par simulation à cette échelle (analyse d'image, passage 2D/3D, TM-FFT) [1].
La thèse se déroulera sur le centre du CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) dans le Laboratoire d'Expertise et de Validation des Applications multi-filières (LEVA). Le LEVA fait partit du Service d'Etude et de Simulation du Combustible (SESC) et a pour mission de :
- Répondre aux besoins des partenaires industriels par des études ;
- Réaliser la validation des Outils de Calculs Scientifiques (OCS) de la plateforme PLEIADES ;
- Approfondir la compréhension du comportement combustible ;
- Gérer les bases de données combustibles.
Enfin, la collaboration avec JRC Karlsruhe sera l'opportunité de travailler dans un cadre international qui est une des forces du LEVA.

Ce travail permettra la valorisation des travaux de recherche lors de conférences et de publications dans des revues à comités de lecture. De plus, l'étudiant en thèse aura l'occasion d'acquérir ou de conforter certaines compétences techniques (interprétations de données expérimentales, modélisation) applicables à différents domaines de la science des matériaux et de l’ingénieur.
[1] Ce travail s'inscrit naturellement dans les perspectives évoquées dans la thèse "Thermal conductivity of mixed oxide fuel (MOX) : effect of temperature, elementary chemical composition, microstructure and burn-up in reactor" - TEL - Thèses en ligne.

Etude expérimentale du comportement des gaz de fission dans les combustibles des Réacteurs à Neutrons Rapides irradiés à basse puissance

Avec l’émergence des nouvelles start-ups dans le domaine du nucléaire, il est primordial d’étendre la base de validation des codes de performances du combustible des Réacteurs à Neutrons Rapides (RNR) à des régimes de fonctionnement à plus faible puissance linéique, un domaine encore peu exploré.
Compte tenu des températures plus faibles atteintes dans le combustible, la microstructure induite par l’irradiation est différente de ce qui est classiquement observée à plus forte puissance linéique. Ces plus faibles températures de fonctionnement entraînent aussi une diminution du relâchement des gaz de fission (RGF) pouvant induire un gonflement gazeux significatif du combustible. De manière concomitante, les faibles températures de fonctionnement peuvent aussi entraîner une augmentation de la densité des défauts générés (dislocations) lors de l’irradiation (efficacité de recuit des défauts plus faible) impliquant une augmentation indirecte du gonflement du combustible.
Il est donc important de déterminer la densité des dislocations dans le combustible car leur rôle ambivalent montre qu’elles peuvent ralentir le relâchement des gaz par piégeage et favoriser leur stockage dans des bulles en position intragranulaire, tout en pouvant aussi faciliter leur migration si elles forment un réseau connecté.
Afin d’améliorer la compréhension des phénomènes mis en jeu et les modèles de gonflement du combustible sous irradiation, il est essentiel de disposer de résultats expérimentaux comme les densités et les tailles de bulles de GF et les densités de dislocations dans ces régimes de fonctionnement.
Le laboratoire de caractérisation et d‘études des propriétés des combustibles au sein de Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) auquel sera rattaché le doctorant est doté d’équipements de pointe dédiés aux matériaux irradiés (MET, MEB-FIB, SIMS, EPMA, DRX)lui permettant d’acquérir des compétences expérimentales pointues sur du combustible irradié. Ce travail sera réalisé en étroite collaboration avec les équipes en charge du développement des outils de calcul scientifique multiphysique de la plateforme logicielle PLEIADES.Les compétences acquises pendant toute la durée de la thèse pourront être valorisées dans un futur parcours professionnel aussi bien académique qu’industriel. Le doctorant pourra également valoriser son travail auprès de la communauté académique internationale et du monde industriel via des présentations orales et des articles à comité de lecture.

Imagerie acoustique des interfaces métal/céramique sur éléments combustibles irradiés : de la mise en œuvre à l’interprétation

Dans le contexte de l’amélioration de la performance et de la sureté des réacteurs nucléaires civils, de nombreux programmes de recherche sont conduits par le CEA en soutien aux industriels EDF et FRAMATOME, en particulier sur le comportement des éléments combustibles sous irradiation. Les éléments combustibles sont constitués d’une gaine métallique et de pastilles en céramique. Dans des situations de variations de puissance, la présence ou l’absence de jeu entre la gaine et les pastilles, et la qualité de l’accrochage entre eux en cas de contact, sont déterminants pour la tenue mécanique de l’élément (https://hal.archives-ouvertes.fr/DEN-DIR/cea-01153334v1).
Pour compléter les méthodes actuelles de caractérisations expérimentales, la faisabilité de la caractérisation de l’interface pastille-gaine par une technique non destructive d’imagerie acoustique a été étudiée et validée sur un banc d’essai en laboratoire universitaire.
Dans la continuité de cette première étude, l’objectif de la thèse est d’instrumenter un banc de mesure déjà opérationnel au CEA, dans une cellule blindée dédiée aux examens sur combustibles irradiés, pour y implanter une chaine d’imagerie acoustique.
Le travail de thèse inclut l’établissement et la mise en œuvre d’un protocole de qualification de la chaine de mesure avec acquisitions de mesures sur éléments combustibles irradiés. Une stratégie de traitement des signaux acoustiques prenant en compte la correction des effets en surface externe de gaine sera mise en place. Les caractéristiques que l’on souhaite obtenir sont la localisation axiale et azimutale des continuités ou discontinuités du contact à l’interface pastille-gaine avec des résolutions de quelques dizaines de micromètres, et la fraction surfacique des zones d’adhérence entre la gaine et le combustible, à l’échelle de quelques pastilles.
Le doctorant sera basé au sein de l’institut IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d’énergie bas carbone) au CEA Cadarache, et les travaux seront réalisés dans une installation disposant d’outils de caractérisation non destructive et destructive permettant d’observer le combustible irradié à toutes les échelles.
Ce travail pluridisciplinaire sera mené en en étroite collaboration avec une équipe de l’IES (Institut de l’Electronique et des Systèmes - CNRS - Montpellier), spécialisée dans la conception de capteurs acoustiques et de systèmes d’imagerie acoustique. En s’appuyant sur les moyens et l’expertise des équipes des deux entités CEA et IES, le doctorant ou la doctorante pourra acquérir de solides compétences dans les domaines de la modélisation, de l’instrumentation et de la mesure. Il ou elle sera amené(e) également à interagir avec les équipes de R&D d’EDF, partenaire industriel de ce projet. Les résultats seront valorisés dans des publications et communications internationales.

Marqueurs radiologiques en Antarctique : développement et validation des méthodologies d’analyse associées

Au sein de l’institut IRESNE (Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone), situé sur le centre CEA-Cadarache, le doctorant participera au développement du Laboratoire d’Analyses Radiochimiques et Chimiques (LARC), qui apporte depuis plus de 60 ans son expertise et un soutien analytique dans les domaines des réacteurs, du combustible, des déchets, ainsi que de l’assainissement et du démantèlement. L’objectif principal de la thèse est le développement et l’optimisation de méthodes analytiques pour la détection de marqueurs radiologiques, en s’appuyant sur des collaborations internes (LANIE, LEXAN) et externes (CSIC, CIEMAT). Les analyses porteront notamment sur le 137Cs et le 210Pb par spectrométrie gamma, sur l’isotopie de l’uranium et du plutonium par MC-ICPMS, ainsi que sur l’indice alpha/bêta global par scintillation liquide. Dans un second temps, l’application de ces méthodes à des échantillons variés, notamment prélevés dans le cadre du projet GEOCHEM [1] en Antarctique permettra d’étudier la distribution spatiale et l’origine de ces marqueurs radiologiques[2]. A l’issue de cette thèse pluridisciplinaire, le doctorant aura acquis une solide expérience dans la mesure des rayonnement gamma, alpha et bêta. L’interprétation des données obtenues en lien avec les paramètres environnementaux contribuera également au développement de son esprit critique et de sa curiosité scientifique.

[1] Maestro, A. et al. Fracturation pattern and morphostructure of the Deception Island volcano, South Shetland Islands, Antarctica. Antarct. Sci. 37, 176–200 (2025).

[2] Xu-Yang, Y. et al. Radioactive contamination transported to Western Europe with Saharan dust. Sci. Adv. 11, eadr9192 (2025).

Vers une nouvelle approche itérative pour la modélisation efficace du contact mécanique

Dans le cadre de la modélisation et de la simulation du comportement des combustibles nucléaires des différentes filières de réacteurs, l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) du CEA Cadarache, en partenariat avec différents acteurs industriels et académiques,développe la plateforme logicielle de simulation du comportement des combustibles PLEIADES. Dans ce contexte, l’interaction entre le combustible et sa gaine, 1ère barrière de confinement, est un phénomène indispensable pour la compréhension et la prédiction du comportement des éléments combustibles.
La modélisation et la simulation numérique des phénomènes de contact mécanique constituent un enjeu scientifique et technologique majeur en mécanique des solides, en raison de la complexité intrinsèque du problème, liée à son caractère fortement non linéaire et non régulier.
Pour pallier les limites des approches classiques, telles que la pénalisation ou les multiplicateurs de Lagrange, de nouvelles stratégies de résolution du contact, reposant sur des schémas itératifs de type point fixe, sont actuellement à l’étude au CEA. Ces approches présentent plusieurs atouts : elles évitent la résolution directe de systèmes complexes et mal conditionnés, améliorent significativement l’efficacité numérique, et offrent une très faible sensibilité aux paramètres algorithmiques, ce qui les rend particulièrement adaptées aux environnements de calcul haute performance (HPC).

L’objectif de la thèse est d’étendre ces stratégies à des situations plus complexes et représentatives, en prenant en compte des comportements matériaux non linéaires et en intégrant des lois de contact plus élaborées, telles que le frottement. Selon l’avancement des travaux, la dernière phase portera sur la transposition des développements dans un environnement de calcul haute performance (HPC), en s’appuyant sur un solveur éléments finis parallèle.
Le projet bénéficiera d’une expertise reconnue à l’international en mécanique, en mathématiques appliquées, et en simulation des combustibles nucléaires avec des encadrants au sein du CEA mais également des collaborations académiques externes (CNRS).

[1] P. Wriggers, "Computational Contact Mechanics", Springer, 2006. doi:10.1007/978-3-540-32609-0.
[2] V. Yastrebov, "Numerical Methods in Contact Mechanics", ISTE Ltd and John Wiley & Sons, 2013. doi: 10.1002/9781118647974
[3] I. Ramière and T. Helfer, “Iterative residual-based vector methods to accelerate fixed point iterations”, Computers & Mathematics with Applications, vol. 70, no. 9, pp. 2210–2226, 2015. doi: 10.1016/j.camwa.2015.08.025.

Comportement mécanique de cellules Li-Ion de quatrième génération, étude à l’échelle de la microstructure

La course à l’augmentation de la densité d’énergie des batteries Li-ion conduit à envisager des batteries à électrolyte non plus liquide mais solide. A cet égard, les électrolytes à base de soufre comme les argyrodites sont d’un grand intérêt du fait de leur conductivité ionique élevée et de leurs propriétés mécaniques permettant une mise en forme par simple pressage. Sous l’effet des cycles de lithiation /délithiation, les particules actives de silicium mélangées à cet électrolyte solide sont à l’origine de variations de volumes susceptibles d’endommager l’électrode et réduire la durée de vie. C’est pourquoi les batteries à électrolyte solide sulfure ne cyclent correctement que maintenues sous pression. L’objectif de ce travail de thèse est donc de modéliser ces phases de charge – décharge de la batterie à l’échelle de microstructures représentatives de ces nouvelles électrodes à électrolyte solide. A l’échelle des particules de silicium, le travail consistera à formuler un modèle de lithiation-délithiation en s’appuyant sur des travaux théoriques antérieurs et par comparaison aux données expérimentales disponibles. Puis des modèles 3D de microstructures d’électrodes constituées d’un électrolyte solide de type argyrodite et de particules de silicium seront établis en s’appuyant sur les caractérisations existantes (images MEB). Enfin sera mis en œuvre le modèle mécanique microscopique de lithiation - délithiation sur ces modèles de microstructures en étudiant en particulier les effets du chargement mécanique externe sur l’intensité des interactions mécaniques à l’échelle de la microstructure et les zones de localisation potentielles de l’endommagement. Ces résultats de simulation seront comparés aux mesures disponibles (mesures de déformations macroscopiques et locales).
Ces travaux seront réalisés au CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) en étroite collaboration avec les équipes du Laboratoire d'Innovation pour les Technologies des Energies nouvelles et les Nanomatériaux (LITEN) du CEA Grenoble.
Ce cadre permettra au doctorant d’évoluer dans un environnement scientifique stimulant et lui permettra de valoriser ses travaux de recherche, en France comme à l’étranger lors de conférences et de publications dans des revues à comités de lecture.

Etude de l’endommagement du combustible en conditions d’Accident par Insertion de Réactivité par chauffage laser: relation avec le relâchement des gaz de fission

Le chauffage par laser de haute-puissance est une technique expérimentale développée au sein du Département d’Etude du Combustible qui permet d’induire des transitoires thermiques sur des échantillons de céramiques nucléaires. Elle permet notamment de reproduire, à l’échelle du laboratoire, les conditions thermomécaniques représentatives d’une séquence incidentelle ou accidentelle, afin d’étudier des mécanismes de bases comme la fracturation ou fragmentation du combustible.
En effet, lors de certaines situations comme un transitoire thermique de type Accident par Insertion de Réactivité (RIA), la fragmentation (ou la sur-fragmentation) du combustible peut entraîner un relâchement des gaz de fission et, in fine, conduire à la rupture de la gaine du crayon combustible.
Ce type de transitoire est notamment caractérisé par une évolution spatio-temporelle complexe de la température au sein du combustible qui est difficilement reproductible à l’échelle du laboratoire. A ce jour, seules les techniques de chauffage par laser de haute-puissance permettent de reproduire les cinétiques de montées en température atteintes lors de ce type de transitoire et de reproduire les conditions thermo-mécaniques d’un RIA à l’échelle d’un échantillon manipulable en laboratoire.
Dans ce contexte, le sujet de thèse vise à fournir des données expérimentales relatives à la fragmentation et sur-fragmentation du combustible en conditions d’Accident par Insertion de Réactivité. Pour ce faire, l’étudiant devra améliorer et développer le banc expérimental existant et réaliser des expériences visant à reproduire les conditions thermo-mécaniques menant à la fragmentation du combustible. Une approche couplée expérimentation/modélisation sera nécessaire pour prédimensionner et interpréter au mieux les expériences. Les données obtenues permettront de valider les modèles de fragmentation développés au CEA et devront aussi permettre une projection de l’intégration de ces techniques expérimentales en cellule blindée.
La thèse sera menée dans un cadre collaboratif (CHAIRE MATLASE) entre le LAMIR (Laboratoire d’Analyse de la MIgration des Radioéléments) au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) du CEA Cadarache et l’équipe ILM (Interaction Laser Matière) de l’Institut Fresnel de Marseille. Cette dernière apportera son expertise dans le domaine des interactions laser de forte puissance / matériaux et de l’instrumentation optique pour le développement du système et des diagnostics optiques complexes.
Ce cadre permettra au doctorant d’évoluer dans un environnement scientifique stimulant et lui permettra de valoriser ses travaux de recherche, en France comme à l’étranger lors de conférences et de publications dans des revues à comités de lecture.

[1]M. Reymond, J. Sercombe, L. Gallais, T. Doualle, and Y. Pontillon, ‘Thermo-mechanical simulations of laser heating experiments on UO2’, Journal of Nuclear Materials, vol. 557, 2021, doi: 10.1016/J.JNUCMAT.2021.153220.
[2]M. Reymond et al., ‘High power laser heating of nuclear ceramics for the generation of controlled spatiotemporal gradients’, J Appl Phys, vol. 134, no. 3, p. 33101, Jul. 2023, doi: 10.1063/5.0146541.
[3]Hugo Fuentes et al., ‘Numerical and experimental simulation of nuclear fuel fragmentation via laser heating of ceramics’, TopFuel 2024. Accessed: Oct. 02, 2025. [Online]. Available: https://www.researchgate.net/publication/386167297_Numerical and experimental simulation of nuclear fuel via laser heating of ceramics

Simulation de l’amorçage et de la propagation de la fissuration dans des matériaux hétérogènes aléatoires

Ce sujet de thèse s’intéresse à la fissuration des combustibles nucléaires à l’échelle de la microstructure, phénomène essentiel à comprendre pour modéliser le comportement des matériaux sous irradiation. En effet, l’amorçage et la propagation de fissures peuvent entraîner le relâchement de gaz de fission et la formation de fragments susceptibles de déplacer la matière fissile. Les modèles industriels actuels reposent sur des représentations simplifiées de la microstructure poreuse, et des critères de rupture empiriques, ce qui limite leur précision physique et leur validation par effets séparés.

Pour dépasser ces limites, le travail de thèse proposé consiste à s’appuyer sur des approches multi-échelles et des simulations par éléments finis en calcul parallèle haute performance (HPC). Les objectifs principaux sont d’arriver à définir un Volume Élémentaire Représentatif (VER) pour l’amorçage de la fissuration dans des matériaux à porosité aléatoire, améliorer les critères de rupture utilisables dans les codes de calculs et définir leurs incertitudes, et enfin établir le domaine de validité pour l’analyse de la propagation dans le VER.

Le premier axe de recherche consiste à définir rigoureusement la taille du VER à partir de grandeurs locales comme la contrainte principale maximale. Des méthodes de réduction de variance seront utilisées pour optimiser le nombre de calculs nécessaires et estimer les erreurs associées.

Dans un second temps, les simulations réalisées pour déterminer le VER serviront à améliorer les modèles opérationnels. L’approche cherchera à séparer l’effet mécanique d’une bulle isolée de celui des interactions entre bulles voisines. Des techniques de Machine Learning pourront être utilisées pour développer ce nouveau modèle. La validation s’appuiera sur des mesures indirectes de la fissuration, comme le relâchement gazeux observé lors de recuits thermiques, notamment pour des combustibles à haut taux de combustion (HBS), où les modèles classiques échouent à prédire la cinétique de fissuration.

Enfin, la propagation des fissures à l’intérieur du VER sera étudiée par des simulations 3D de type champ de phase, permettant de représenter finement les différentes étapes de propagation post-amorçage. L’influence des conditions aux limites du VER sera examinée par comparaison à des simulations sur des domaines plus larges.

La thèse se déroulera au CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE), dans l’équipe de développement de la plateforme numérique PLEIADES, spécialiste de la simulation du comportement du combustible et des méthodes numériques multi-échelles. Elle sera réalisée en collaboration avec le CNRS/LMA dans le cadre du laboratoire commun MISTRAL, notamment sur les aspects analyse de la représentativité du milieu aléatoire et simulation micromécanique de la propagation des fissures.

Top