Défense des modèles d'analyse de scène contre les attaques adversaires

Dans de nombreuses applications, des briques d'analyse de scène comme la segmentation sémantique, la détection et la reconnaissance d'objets, ou la reconnaissance de pose, sont nécessaires. Les réseaux de neurones profonds sont aujourd'hui parmi les modèles les plus efficaces pour effectuer un grand nombre de tâches de vision, parfois de façon simultanée lorsque l'apprentissage profond est multitâches. Cependant, il a été montré que ceux-ci étaient vulnérables face aux attaques adversaires (adversarial attacks): En effet, il est possible d'ajouter aux données d'entrée certaines perturbations imperceptibles par l'oeil humain qui mettent à mal les résultats lors de l'inférence faite par le réseau de neurones. Or, une garantie de résultats fiables est capitale pour les systèmes de décision où les failles de sécurité sont critiques (ex : applications comme le véhicule autonome, la reconnaissance d’objets en surveillance aérienne, ou la recherche de personnes/véhicules en vidéosurveillance). Différents types d'attaques adversaires et de défense ont été proposés, le plus souvent pour le problème de classification (d'images notamment). Quelques travaux ont abordé l'attaque des plongements qui sont optimisés par apprentissage de métrique pour les tâches de type ensemble-ouvert comme la réidentification d'objets, la reconnaissance faciale ou la recherche d'images par le contenu. Les types d'attaques se sont multipliés, qu'il s'agisse d'attaques universelles ou optimisées sur une instance particulière. Les défenses proposées doivent faire face à de nouvelles menaces sans trop sacrifier les performances initiales du modèle. La protection des données d'entrée face aux attaques adversaires est capitale pour les systèmes de décision où les failles de sécurité sont critiques. Un moyen de protéger ces données est de développer des défenses contre ces attaques. L'objectif sera donc d'étudier et de proposer différentes attaques et défenses applicables aux briques d'analyse de scène, notamment celles de détection d'objets et de recherche d'instance d'objet dans les images.

Apprentissage des modèles du monde pour les agents autonomes avancés

Les modèles du monde sont des représentations internes de l'environnement externe qu'un agent peut utiliser pour interagir avec le monde réel. Ils sont essentiels pour comprendre les lois physiques qui régissent les dynamiques du monde réel, faire des prédictions et planifier des actions à long terme. Les modèles du monde peuvent être utilisés pour simuler des interactions réelles et améliorer l'interprétabilité et l'explicabilité du comportement d'un agent dans cet environnement, ce qui en fait des composants clés pour les modèles avancés d'agents autonomes.

Néanmoins, la construction d'un modèle du monde précis reste un défi. L'objectif de cette thèse de doctorat est de développer une méthodologie pour apprendre les modèles du monde et étudier leur utilisation dans le contexte de la conduite autonome, en particulier pour la prévision des mouvements et le développement d'agents autonomes pour la navigation.

Accélération de simulations thermo-mécaniques par Réseaux de Neurones --- Applications à la fabrication additive et la mise en forme des métaux

Dans un certain nombre d'industries telle que la mise en forme des métaux ou la fabrication additive, l'écart entre la forme désirée et la forme effectivement obtenue est important, ce qui freine le développement de ces méthodes de fabrication. Cela est dû en bonne partie à la complexité des processus thermiques et mécaniques en jeu, difficiles à simuler à des fins d’optimisation du fait du temps de calcul important de la simulation des phénomènes en jeu.

La thèse vise à réduire significativement cet écart grâce à l'accélération des simulations thermo-mécaniques par éléments finis, notamment via le design d'une architecture de réseau de neurones adaptée, en s'appuyant sur les connaissances physiques théoriques.

Pour mener à bien ce sujet, la thèse bénéficiera d'un écosystème favorable aussi bien au LMS de l'École polytechnique qu'au CEA List : architecture PlastiNN développée en interne (brevet en cours de dépôt), bases de données mécanique existantes, supercalculateur FactoryIA et DGX, machine d'impression 3D. Il s'agira dans un premier temps de générer des bases de données à partir de simulations éléments finis thermo-mécaniques, puis d'adapter PlastiNN à apprendre de telles simulations, avant de mettre en œuvre des procédures d'optimisation s'appuyant sur ces réseaux de neurones.

L'objectif final de la thèse est d'illustrer l'accélération de simulations éléments finis ainsi obtenue sur des cas réels : d'une part par l'instauration d'une rétroaction durant l'impression métallique via la mesure du champ de température pour réduire l'écart entre géométrie désirée et géométrie fabriquée, d'autre part par la mise en place d'un outil de commande de forge qui permet d'arriver à une géométrie désirée à partir d'une géométrie initiale. Les deux applications s'appuieront sur une procédure d'optimisation rendue réalisable par l'accélération des simulations thermo-mécaniques.

Top