Monitoring in situ du vieillissement des circuits amplificateurs de puissance RF pour une écoconception et une durée de vie étendue
L'industrie des semi-conducteurs, et en particulier celle des circuits radiofréquences (RF), fait face à des défis critiques liés à l'écoconception et à l'éco-innovation. Ces enjeux incluent la nécessité de prolonger la durée de vie des circuits tout en répondant aux attentes des marchés émergents tels que la 5G et la future 6G. Parmi ces circuits, les amplificateurs de puissance (PA) occupent une place centrale, étant à la fois des composants critiques en termes de performance énergétique et des cibles privilégiées pour l'amélioration de leur robustesse face au vieillissement et à leur éventuelle réutilisation.
Le monitoring in situ du vieillissement des PA représente une voie prometteuse pour développer des solutions à la fois innovantes et durables. A ce titre, ce sujet s'inscrit pleinement dans les stratégies d'écoconception en exploitant des plateformes technologiques avancées telles que les technologies CMOS SOI actuelles et futures, tout en intégrant les contraintes industrielles à travers des collaborations stratégiques existantes avec des partenaires majeurs du CEA Leti.
Cette thèse vise à concevoir une solution innovante de monitoring in situ pour évaluer et compenser le vieillissement des amplificateurs de puissance, prolongeant ainsi leur durée de vie grâce à des stratégies de réutilisation et d’autocorrection. Pour ce faire, elle reposera sur des méthodologies et des circuits adaptés à des cas concrets. Ainsi, l’ambition sera de développer une nouvelle génération de circuits robustes et durables, intégrant des mécanismes intelligents de gestion du vieillissement. En adoptant une approche d’écoconception, ce travail aura pour but de répondre aux défis environnementaux tout en renforçant la compétitivité industrielle des technologies CMOS SOI.
Validation d'un modèle d'attaquant pour les attaques laser sur les circuits intégrés
La sécurité des systèmes embarqués est aujourd'hui un enjeu fondamental dans de nombreux domaines : IoT, Automobile, Aéronautique, entre autres. Les attaques physiques sont une menace spécifique supposant un accès physique à la cible. En particulier, les attaques par injection de fautes sur les circuits intégrés (CI) permettent de perturber le système afin de récupérer des donnés confidentielles ou de contourner un mécanisme vérifiant l'intégrité du code exécuté sur une machine. En raison de leurs fortes capacités à générer des vulnérabilités, les développeurs doivent protéger leur système contre de telles attaques pour être conformes aux normes de sécurité telles que Common Criteria et FIPS.
Dans le contexte de la constante réduction des technologies silicium, et avec la transition vers les technologies FD-SOI, le modèle de vulnérabilité d'un CI doit être drastiquement révisé, du niveau transistor jusqu'à celui des circuits numériques complexes. Dans cette thèse, nous proposons d'étudier la validation du modèle d'attaquant à ce dernier niveau. L'objectif est de contribuer à la définition d'un modèle de vulnérabilité après la synthèse d'une description RTL d'un circuit (par exemple un microcontrôleur) dans une technologie FD-SOI 22 nm. Ces modèles contribueront à définir le modèle d'attaquant injecté en entrée d'outils de vérification formelle. Le candidat devra définir une méthodologie pour caractériser par des expériences laser les modèles multicouches et hétérogènes afin de fournir une analyse quantitative de leur limite de validité. La méthodologie sera testée sur des ASIC réalisés par le CEA dans le cadre de projets de R&D permettant d'avoir une maîtrise et une connaissance complète de l'architecture, des paramètres de conception et de synthèse et des codes exécutés.
Module d’auto-adaptation d’antenne et synthèse d’impédance intégré dans la bande sub-6 GHz pour les applications RF de nouvelle génération
L’adoption croissante des systèmes RF sub-6 GHz pour la 5G, l’IoT et les technologies portables a créé une demande critique pour des solutions compactes, efficaces et adaptatives afin d’améliorer le transfert d’énergie, de réduire les effets de désaccord liés à l’environnement, et d’offrir des capacités avancées de détection. Cette thèse propose un système innovant sur puce (SoC) intégrant une unité d’accord d’antenne (ATU) et un module d’impédance synthétisée (SIM) pour répondre à ces défis. En combinant la mesure d’impédance in situ et une réadaptation dynamique, le système résout une limitation majeure des antennes miniatures : leur sensibilité extrême aux perturbations environnementales, telles que la proximité du corps humain ou des surfaces métalliques. De plus, l’intégration du module d’impédance synthétisée apporte une polyvalence supplémentaire en permettant l’émulation de charges complexes. Cette capacité optimise non seulement le transfert d’énergie, mais ouvre également la voie à des fonctionnalités avancées, comme la caractérisation de matériaux et la détection de l’environnement autour de l’antenne.
L’un des axes centraux de cette recherche est la co-intégration d’un analyseur de réseau vectoriel (VNA) avec un réseau de post-matching large bande (PMN) et un module d’impédance synthétisée. Cette architecture combinée offre une surveillance en temps réel de l’impédance, un ajustement dynamique et la génération de profils d’impédance spécifiques, essentiels pour caractériser la réponse de l’antenne dans différents scénarios. Un fonctionnement garanti dans la bande 100 MHz–6 GHz est assuré tout en maintenant une faible consommation d’énergie grâce à une gestion efficace des cycles d’activité.
Profil recherché : vous êtes passionné(e) par l’électronique et la microélectronique, et souhaitez contribuer à une avancée technologique majeure ? Nous recherchons un(e) candidat(e) motivé(e) et curieux(se), doté(e) des qualités suivantes :
. Formation : Diplômé(e) d’une école d’ingénieurs ou titulaire d’un master en électronique ou microélectronique.
. Compétences techniques :
Solides connaissances en technologies transistors (CMOS, Bipolaire, GaN…).
Expertise en conception analogique/RF.
Expérience avec des outils de conception tels qu’ADS et/ou Cadence.
Programmation : Compétences de base en Python, MATLAB ou autres langages similaires.
Expérience complémentaire : Une première expérience en conception de circuits intégrés serait un atout précieux.
. Pourquoi postuler : vous aurez l’opportunité de travailler sur des technologies de pointe au sein d’un environnement de recherche innovant et collaboratif. Vous serez accompagné(e) par des experts renommés du domaine pour relever des défis scientifiques et techniques stimulants.
Contacts : PhD.Ghita Yaakoubi KHBIZA : ghita.yaakoubikhbiza@cea.fr, HDR.Serge Bories : serge.bories@cea.fr
Métasurfaces Electromagnétiques à Modulation Spatio-Temporelle pour Systèmes de Communication Multifonctionnels et Durables
Les systèmes sans fil de prochaine génération (XG) envisagent une densification sans précédent des réseaux et une utilisation efficace du spectre proche des ondes millimétriques (mmW). Des concepts disruptifs sont nécessaires pour minimiser le nombre de systèmes d'antennes et leur consommation d'énergie. Les surfaces intelligentes reconfigurables (RIS) peuvent fournir une formation de faisceaux à haut gain à l'aide de dispositifs simples (par exemple, des diodes p-i-n) pour contrôler les propriétés de diffusion de leurs cellules unitaires. Cependant, l'efficacité d'une RIS et les fonctions sans fil qu'elle peut réaliser simultanément sont limitées par sa linéarité et sa réciprocité inhérentes.
Les métasurfaces modulées espace-temps (STMM) ont récemment émergé comme une solution de formation de faisceaux permettant de dépasser les limites fondamentales des systèmes linéaires invariants dans le temps. En tirant parti d'une variation temporelle supplémentaire de la réponse des cellules unitaires, par rapport aux RIS, une STMM peut ajuster simultanément les spectres angulaire et fréquentiel des champs rayonnés, sans recourir à de multiples circuits actifs comme dans les systèmes actuels.
La plupart des modèles de conception des STMM sont simplifiés et considèrent des modulations 1-D dans un régime temporel quasi-statique. L'impact de la discrétisation spatiale et de la quantification de phase est souvent négligé. Les rares prototypes rapportés sont souvent de petite taille électrique, avec une période grossière (demi-longueur d'onde). La plupart des démonstrateurs fonctionnent en réflexion, à des fréquences inférieures à 17 GHz, et ne permettent qu'une résolution de phase d’un bit. Une commande indépendante des faisceaux dans le champ lointain à plusieurs fréquences a été prouvée dans un seul plan de balayage.
Cette thèse de doctorat vise à modéliser, concevoir et démontrer des antennes STMM transmissives de grande taille électrique et multifonctionnelles, avec une résolution de phase et des capacités de formation de faisceaux améliorées. Des modèles numériques efficaces permettront de calculer les champs diffusés par une STMM dans les régions de champs lointain et proche, pour des périodes spatiales et temporelles arbitraires. Des techniques holographiques et de détection compressive seront proposées pour optimiser conjointement le profil de phase de la métasurface et les formes d'onde de modulation temporelle, permettant une mise en forme harmonique des faisceaux. Une étude approfondie de l'effet de la résolution de phase, de la période STMM et de la fréquence de modulation temporelle sur les performances, la consommation d'énergie et la complexité des électroniques de contrôle sera fournie.
Un prototype STMM transmissif basé sur des diodes p-i-n et permettant une résolution de phase de 2 bits sera réalisé pour la première fois, en s'appuyant sur les travaux du labo sur les antennes à lentilles plates électroniquement reconfigurables modulées dans l'espace. Il fonctionnera dans une gamme de fréquences adaptée aux réseaux terrestres et satellitaires (17-31 GHz). Plusieurs fonctionnalités d'antennes seront caractérisées expérimentalement à l'aide du même prototype, telles que : (i) une formation de faisceaux 2D simultanée et non réciproque à différents harmoniques des signaux de modulation temporelle, dans les régions de champ lointain ou proche ; (ii) une mise en forme de motif à la fréquence fondamentale, en utilisant des séquences temporelles optimisées pour augmenter la résolution effective de phase.
Les contributions fondamentales et expérimentales de cette recherche élargiront la compréhension physique des métasurfaces modulées dans le temps et augmenteront la maturité de cette technologie pour des antennes intelligentes économes en énergie, avec des applications aux réseaux sans fil et aux systèmes intégrés de communication et de détection. Une activité intense de diffusion dans des revues scientifiques à fort impact en électronique et physique appliquée est attendue, compte tenu de la nouveauté du sujet et de l'intérêt croissant qu'il suscite dans plusieurs communautés scientifiques.
Techniques d’attaques laser appliquées à la rétro-conception de mémoires
Les mémoires jouent un rôle crucial pour la sécurité des systèmes cyber-physiques. Elles gèrent des données sensibles telles que les clés cryptographiques et les codes propriétaires. Avec l'augmentation des attaques dites matérielles, comprendre et manipuler l'organisation de la mémoire est devenu essentiel. Cette thèse vise à explorer l'application de techniques d'injection laser, notamment la Stimulation Laser Thermique (TLS) et la perturbation laser, pour la rétro-conception de mémoires. L'objectif principal est de développer des méthodes pour extraire ou modifier le contenu de la mémoire, avec un accent particulier sur la validation du TLS sur la technologie FDSOI 22nm. De plus, la thèse cherche à utiliser la perturbation laser pour reconstruire l'architecture de la mémoire, analyser les codes correcteurs d'erreurs et concevoir des contre-mesures. Ces travaux s'appuieront sur les infrastructures de tests disponible au CEA (e.g.,https://github.com/CEA-Leti/secbench), ainsi que sur les experts.
Surface électromagnétique programmable aux fréquences sub-THz à base de commutateurs à matériaux à changement de phase
La conception et le développement de surfaces rayonnantes pour la formation électronique de faisceau, la modulation spatio-temporelle, la détection et la conversion de fréquence est un enjeu important pour des nombreuses applications aux fréquences sub-THz (0.1-0.6 GHz). Parmi ces applications on peut mentionner l’imagerie médicale et le contrôle industriel, l’observation de la terre et de l’espace profond, ainsi que les radars et les systèmes futurs de télécommunication très large bande. Dans ce contexte, les (Meta)Surfaces Intelligentes et Reconfigurables (RIS) sont une technologie de rupture. Leur utilisation permet de contrôler et former le rayonnement aux fréquences sub-THz de manière hybride analogique / numérique. Pour démocratiser la technologie RIS, il sera crucial de réduire sa consommation d'énergie de deux ordres de grandeur. Cependant, l'état de l'art ne répond pas aux exigences d'intégration, de modularité, de bande passante large et de haute efficacité.
Sur la base de nos résultats de recherche récents, l'objectif principal de ce projet de thèse sera de démontrer des nouvelles architectures de RIS à base de silicium à 140 GHz et 300 GHz. L'amélioration des performances du RIS THz découlera d'un choix judicieux de la technologie de fabrication et de nouvelles conceptions de méta-atomes (également appelées cellule unitaire ou élément) à large bande avec des commutateurs intégrés de type PCM (materiaux à changement de phase). La possibilité de contrôler dynamiquement l'amplitude des coefficients de transmission des méta-atomes, en plus de leur phase, sera également étudiée. Un éclairage en champ proche sera introduit pour obtenir un profil ultra-compact. A notre connaissance, cela constitue une nouvelle approche pour la conception d'antennes à gain élevé dans la gamme de fréquence sub-THz.
Conception de circuit radiofréquence pour la communication zéro energie
Notre ambition pour la communication 6G est de réduire radicalement l'énergie dans l'IoT. Pour ce faire, nous souhaitons développer un circuit intégré permettant une communication à énergie zéro qui sera une preuve de concept.
L'objectif de cette thèse est de concevoir ce circuit en FD-SOI et de le faire fonctionner dans la bande des 2,4 GHz. Dans cette thèse, nous proposons d'utiliser une nouvelle technique de conception qui révolutionne actuellement la conception des radiofréquences. Nous espérons que de nombreuses innovations pourront être réalisées au cours de ce doctorat en combinant ces deux innovations.
Le candidat intégrera une grande équipe de conception et participera à des projets de collaboration au niveau européen. Dans un premier temps, il analysera les contraintes du système pour choisir la meilleure architecture et en déduire les spécifications. Ensuite, il formalisera mathématiquement les performances de la technique de rétrodiffusion afin de mettre en place une méthodologie de conception. Il travaillera ensuite à plein temps sur la conception du circuit, envoyant à la fabrication deux circuits en technologie 22 um. Il sera également impliqué dans le test du circuit ainsi que dans la préparation d'un démonstrateur des techniques de rétrodiffusion. Nous espérons publier plusieurs articles dans des conférences de haut niveau.
Implémentation matérielle/logicielle sécurisée et agile des nouveaux algorithmes de signature numérique en cryptographie post-quantique
La cryptographie joue un rôle fondamental dans la sécurisation des systèmes de communication modernes en garantissant la confidentialité, l'intégrité et l'authenticité. La cryptographie à clé publique, en particulier, est devenue indispensable pour sécuriser les processus d’échange de données et d’authentification. Cependant, l’avènement de l’informatique quantique constitue une menace pour de nombreux algorithmes cryptographiques à clé publique traditionnels, tels que RSA, DSA et ECC, qui reposent sur des problèmes tels que la factorisation entière et les logarithmes discrets que les ordinateurs quantiques peuvent résoudre efficacement. Conscient de ce défi imminent, le National Institute of Standards and Technology (NIST) a lancé en 2016 un effort mondial pour développer et normaliser la cryptographie post-quantique (PQC). Après trois rondes d'évaluations, le NIST a annoncé son premier ensemble d'algorithmes standardisés en 2022. Bien que ces algorithmes représentent un progrès significatif, le NIST a exprimé un besoin explicite de cryptosystèmes supplémentaires qui exploitent des hypothèses de sécurité alternatives et a ouvert un nouveau concours dédié aux nouvelles signatures.
À mesure que la communauté cryptographique s’oriente vers l’adoption de cette nouvelle cryptographie, un défi majeur réside dans leur déploiement efficace dans des systèmes réels. Les implémentations matérielles, en particulier, doivent répondre à des exigences strictes en matière de performances, de consommation d'énergie et de coût, tout en offrant la flexibilité nécessaire pour s'adapter à plusieurs algorithmes, qu'ils soient standardisés ou encore en cours d'évaluation. Une telle agilité est essentielle pour pérenniser les systèmes face à l’incertitude inhérente aux transitions cryptographiques. L'objectif principal de cette thèse sera de concevoir et de développer des implémentations matérielles agiles pour des algorithmes de signature numérique post-quantique. Cela implique une étude approfondie des principaux candidats du quatrième tour du concours du NIST, ainsi que de ceux déjà standardisés, afin de comprendre leurs formalismes, leurs propriétés de sécurité et leurs bottlenecks. La thèse explorera également les optimisations pour l'efficacité des ressources, en équilibrant les compromis entre performances, consommation d'énergie et surface. De plus, la résilience contre les attaques physiques (attaques par canaux cachés et par injection de fautes) sera un élément clé du processus de conception.
Ce projet de thèse sera mené au sein du projet PEPR PQ-TLS en collaboration avec le laboratoire TIMA (Grenoble), l'Agence nationale de la sécurité des systèmes d'information (ANSSI) et l'INRIA.
Radars passifs distribués
L'objectif de cette thèse consiste à détecter et localiser des drones pénétrant dans une zone urbaine à protéger grâce à l’observation des signaux émis par les stations cellulaires.
Des études ont montrées qu’il était possible de localiser un drone s’il était proche du système d’écoute et de la station cellulaire (i.e. la station de base). Quand la situation est plus complexe (i.e. il n’y a pas de trajet direct entre la station cellulaire et le radar ou en présence de plusieurs stations cellulaires émettrices causant un fort niveau d’interférence), un seul système d’écoute dit radar passif ne peut détecter et localiser correctement le drone.
Pour s’affranchir de ces conditions difficiles, nous souhaitons distribuer ou déployer sur la zone à protéger un ensemble de radars passifs à faible complexité qui exploitent de façon optimale les signaux émis par ces stations cellulaires. Une stratégie de distribution et de déploiement de radars passifs est alors à considérer en prenant en compte les positions des stations cellulaires émettrices. La possibilité d’échanger des informations entre les radars passifs doit également être envisagée afin de mieux gérer les interférences liées aux stations cellulaires.
Le candidat devra faire état d’une formation de niveau Master 2 à dominante traitement numérique du signal. De bonnes connaissances en télécoms, radar et propagation sont recommandées.
L’étudiant sera accueilli au CEA Grenoble dans une équipe d’experts en traitement du signal pour les télécommunications (http=s://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/plateforme-telecommunications.aspx)
Modélisation des Signatures Électromagnétiques dans un Scénario à Trajets Multiples pour la Reconnaissance d'Objets et le SLAM Radio Sémantique
Contexte:
La vision des futurs réseaux de communication sans fil envisage des services de positionnement et de localisation extrêmement précis dans des environnements intérieurs et extérieurs, en parallèle avec les services de communication (Joint Communication and Sensing- JCAS). Avec l'utilisation généralisée des technologies radar, le concept de Simultaneous Localization and Mapping (SLAM) a récemment été adapté aux applications en radiofréquences. Les premières démonstrations de faisabilité ont été réalisées en environnements intérieurs, produisant des cartes 2D basées sur des signaux rétrodiffusés aux ondes millimétriques (mmWave) ou en THz. Ces mesures permettent de fournir des données de détection, ouvrant la voie au développement de modèles complexes qui détaillent l'emplacement précis, la taille et l'orientation des objets cibles, ainsi que leurs propriétés électromagnétiques et leur composition matérielle.
Au-delà de la simple reproduction de cartes, l'intégration de la reconnaissance et du positionnement d'objets dans l'environnement peut ajouter une couche sémantique à ces applications. Bien que le SLAM sémantique ait été exploré avec des technologies basées sur des capteur vidéo, son application aux radiofréquences reste un domaine de recherche émergent nécessitant des modèles électromagnétiques précis des signatures des objets et de leurs interactions avec l'environnement. Des études récentes ont développé des modèles basés sur l'optique physique itérative et des courants équivalents pour simuler la signature multistatique en espace libre d'objets proches.
Thèse de doctorat:
L'objectif de cette thèse est d'étudier et de modéliser la rétrodiffusion des objets dans un scénario à trajets multiples, afin d'obtenir une imagerie précise et une reconnaissance des objets (y compris leurs propriétés matérielles). Le travail consistera à développer un modèle mathématique pour la rétrodiffusion des objets détectés dans l'environnement, à l'appliquer au SLAM 3D et à atteindre des objectifs de reconnaissance et de classification des objets. Ce modèle devra intégrer les effets en champ proche et en champ lointain tout en prenant en compte l'impact de l'antenne sur le canal radio global.
L'étude soutiendra la conception conjointe des systèmes d'antennes et des techniques de traitement associées (filtrage et imagerie) nécessaires à l'application.
Le doctorant fera partie du Laboratoire Antennes, Propagation et Couplage Inductif du CEA-LETI, à Grenoble (France). Il bénéficiera d'installations de pointe (sondeurs de voies, émulateur, logiciel OTA et simulateur électromagnétique).
La thèse se déroulera en partenariat avec l'Université de Bologne.
Application:
Le poste est ouvert aux étudiant.e.s exceptionnels titulaires d’un Master of Science, d’une école d’ingénieur ou équivalent. Le/la étudiant.e doit avoir une spécialisation dans le domaine des télécommunications, des micro-ondes et/ou du traitement du signal. Le dossier de candidature doit obligatoirement comprendre un CV, une lettre de motivation et les notes des deux dernières années d'études.