Conception innovante de circuit radiofréquence basée sur une approche de co-optimisation technology-système
Ce sujet de thèse adresse les deux grands défis de l’Europe d’aujourd’hui pour l’intégration des systèmes de communication du futur. Il s’agit de concevoir des circuits intégrés RF en technologie 22nm FDSOI dans les bandes de fréquences dédiées à la 6G permettant non seulement d’augmenter les débits mais aussi de réduire l’empreinte carbone des réseaux de télécommunications. En parallèle, il est primordial de réfléchir à l’évolution des technologies silicium qui permettraient d’améliorer l’efficacité énergétique et l’efficacité de ces circuits. Ce travail sera mené en apportant une réflexion sur la méthodologie de conception des systèmes radiofréquences.
Dans le cadre de la thèse, l'objectif sera décomposé en trois phases. Il faudra d’abord se doter d’outils de simulation, préfigurant les performances de la future technologie FDSOI 10nm du Leti. Une deuxième étape consistera à identifier les architectures les plus pertinentes existant dans la littérature pour les domaines applicatifs envisagés pour la technologie. Un lien avec les projets amonts en télécommunications sera systématiquement établi pour que le candidat saisisse les enjeux des systèmes.
Enfin, afin de valider les concepts développés, la conception d’un LNA et d’un VCO dans le cadre d’un projet en cours dans le laboratoire sera proposée.
Le candidat s’intégrera dans une équipe conséquente qui travaille sur les nouveaux systèmes de communication et qui aborde à la fois les aspects d’étude architecturale, de modélisation et de conception de circuits intégrés. Le candidat devra disposer de compétences sérieuses en conception de circuits intégrés et en systèmes radiofréquence ainsi qu’une bonne aptitude à travailler en équipe.
Localisation et Cartographie Coopératives via des Méthodes d’Apprentissage Exploitant les Multi-trajets Radio
Dans le cadre de cette thèse, on se propose d'explorer le potentiel des méthodes d'apprentissage machine (ML) pour assurer des fonctions simultanées de localisation et de cartographie (SLAM), en s’appuyant sur des signaux multi-trajets transmis entre plusieurs dispositifs radio coopératifs. L'idée consiste à identifier certaines caractéristiques des canaux de propagation observés conjointement sur plusieurs liens radio, afin de déterminer les positions relatives des dispositifs radio mobiles, ainsi que celles d’objets passifs présents dans leur voisinage. Ces caractéristiques radio reposent typiquement sur les temps d'arrivée d‘échos multiples des signaux transmis. L'approche envisagée doit alors bénéficier de la corrélation de ces trajets multiples au gré du déplacement des dispositifs radio, ainsi que de la diversité spatiale et de la redondance d’information autorisées par la coopération entre ces mêmes dispositifs. Les solutions développées seront évaluées sur la base de mesures indoor collectées à partir des dispositifs ultra large bande intégrés, ainsi que de données synthétiques générées à l'aide d'un simulateur de type « tracer de rayons ». Des applications possibles concernent la navigation de groupe au sein d’environnements complexes et/ou inconnus (ex. flottes de drones ou de robots, pompiers...).
Nouvelles méthodes d’apprentissage appliquées aux attaques par canaux auxiliaires
Les produits sécurisés grâce à des mécanismes cryptographiques embarqués peuvent être vulnérables aux attaques par canaux auxiliaires. Ces attaques se basent sur l’observation de certaines quantités physiques mesurées pendant l’activité du dispositif dont la variation provoque une fuite d’information qui peut mettre en défaut la sécurité du dispositif. Aujourd’hui ces attaques sont rendues efficaces, même en présence de contremesures spécifiques, par l’utilisation de méthodes d'apprentissage profond (deep learning). L’objectif de cette thèse est de s’approprier des techniques de l’état de l’art des méthodes d’apprentissage automatique semi-supervisé et auto-supervisé, et de les adapter au contexte des attaques par canaux auxiliaires, afin d’améliorer les performances des attaques pour lesquelles le scénario d’attaque est particulièrement défavorable. Une attention particulière pourra être donnée aux attaques contre les implémentations sécurisées d’algorithmes de cryptographie post-quantique.
Sécurisation cryptographique d’enclaves de processeurs RISC-V avec CHERI
CHERI (Capability Hardware Enhanced RISC Instructions) est une solution permettant de sécuriser le processeur contre les fuites spatiales et temporelles de mémoire en transformant tout pointeur en capacité définissant de façon claire les bornes d’accès aux données ou instructions adressées.
Dans cette thèse, nous proposons sur un processeur d’applications RISC-V d’enrichir CHERI et ses possibilités d’intégrité de flot de contrôle avec une protection des instructions allant jusqu’à leur exécution contre tout type de modifications. Dans un second temps, sur la base d’un chiffrement authentifié de la mémoire, nous étudierons la possibilité avec CHERI de définir des enclaves sécurisées permettant une isolation cryptographique entre processus. Le processeur sera modifié pour que chaque processus soit chiffré avec sa propre clé et puisse avoir un cycle de vie sûr. L’ensemble des clés devra être protégé efficacement dans le matériel.
Contact : olivier.savry@cea.fr
Blockchain locale embarquée sur dispositifs physiques sécurisés
La blockchain repose sur un protocole de consensus qui a pour objectif de partager et répliquer des données ordonnancées entre les pairs d’un réseau distribué. La pile protocolaire, embarquée dans les dispositifs pairs du réseau, s’appuie sur un mécanisme de preuve qui atteste l’horodatage et permet une certaine équité au sein du réseau.
Les protocoles de consensus utilisés dans les blockchains déployées aujourd’hui ne sont pas adaptés pour l’embarqué, car ils requièrent trop de ressources de communication et/ou de calcul pour la preuve. Quelques travaux de recherche, comme IOTA ou HashGraph, traitent de ce sujet et pourront être analysés dans l’état de l’art.
La problématique de la thèse est de construire un protocole de consensus, frugal en communications et en ressources de calcul, dont la pile protocolaire sera implémentée dans un dispositif embarqué sécurisé. Ce protocole devra s’appuyer sur une preuve de temps écoulée issue de travaux de notre laboratoire, également frugale, appelée Proof-of-Hardware-Time (PoHT) et satisfaire les propriétés de finalité et d’équité. L’architecture complète d’un nœud pair du réseau sera conçue et embarquée sur une carte électronique de type microprocesseur intégrant plusieurs composants de sécurité matérielle, de telle sorte que la ressource de preuve ne soit pas parallélisable. La communication entre les pairs sera établie de façon distribuée.
Etudes avancées de la Représentation Sémantique, de l'Alignement et du Raisonnement dans les Systèmes de Communication Multi-Agents pour les Réseaux 6G
Les communications sémantiques représentent un domaine de recherche émergent et transformateur, où l'objectif se déplace de la transmission de simples données brutes à celle d'informations significatives. Bien que les premiers modèles et solutions de conception aient établi des principes fondamentaux, ils reposent souvent sur des hypothèses fortes concernant l'extraction, la représentation et l'interprétation du contenu sémantique. L'arrivée des réseaux 6G introduit de nouveaux défis, en particulier avec le besoin croissant de systèmes multi-agents où plusieurs agents pilotés par l'intelligence artificielle (IA) interagissent de manière fluide.
Dans ce contexte, le défi de l'alignement sémantique devient crucial. La littérature existante sur les communications sémantiques multi-agents suppose fréquemment que tous les agents partagent un cadre d'interprétation et de compréhension commun, ce qui est rarement le cas dans des scénarios pratiques. Des représentations mal alignées peuvent entraîner des inefficacités de communication, une perte d'informations critiques et des malentendus.
Cette recherche doctorale vise à faire progresser l'état de l'art en explorant les principes de représentation sémantique, d'alignement et de raisonnement dans des environnements multi-agents IA au sein des réseaux de communication 6G. L'étude examinera comment les agents peuvent aligner dynamiquement leurs modèles sémantiques, garantissant une interprétation cohérente des messages tout en tenant compte des différences de contexte, d'objectifs et de connaissances préalables. En s'appuyant sur des techniques issues de l'intelligence artificielle, telles que l'apprentissage automatique, l'alignement d'ontologies et le raisonnement multi-agents, l'objectif est de proposer des cadres novateurs qui améliorent l'efficacité et l'efficience des communications dans des environnements multi-agents. Ce travail contribuera à des systèmes de communication plus adaptatifs, intelligents et sensibles au contexte, essentiels à l'évolution des réseaux 6G.
Amélioration de la sécurité des communications grâce à la conception d'émetteurs-récepteurs plus rapides que Nyquist
Face à la demande croissante en capacité de transmission des réseaux de communication, il est essentiel d'explorer des techniques innovantes qui augmentent l'efficacité spectrale tout en maintenant la fiabilité et la sécurité des liens de transmission. Ce projet propose une modélisation théorique approfondie des systèmes Faster-Than-Nyquist (FTN) accompagnée de simulations et d'analyses numériques afin d’évaluer leurs performances dans différents scénarios de communication. L'étude s'efforcera d'identifier les compromis nécessaires pour maximiser le débit de transmission, tout en tenant compte des contraintes liées à la complexité de mise en œuvre et à la sécurité des transmissions, un enjeu crucial dans un environnement de plus en plus vulnérable aux cybermenaces. Ce travail permettra d’identifier les opportunités d'augmentation de capacité, tout en mettant en évidence les défis technologiques et les ajustements indispensables à une adoption généralisée de ces systèmes pour des liaisons critiques et sécurisées.
Reconstruction numérique d’une cuve industrielle pour l’amélioration de l'instrumentation de suivi en temps réel
Dans un contexte de digitalisation de l’industrie et de surveillance en temps réel, il peut être crucial d’avoir accès en temps réel à des champs 3D (vitesse, viscosité, turbulence, concentration…), les réseaux de capteurs locaux étant parfois insuffisants pour avoir une bonne vision de ce qui se passe au sein du système. Ce sujet de thèse se propose d’investiguer une méthodologie adaptée à la reconstruction en temps réel de champs au sein d’une cuve industrielle instrumentée. Pour cela il est envisagé de se baser sur une modélisation éléments finis de la physique d’intérêt au sein de la cuve (fluidique, thermique…), et de méthodes de réduction de modèles basés sur le Machine Learning informé par la physique (approche capteurs virtuels). Le cœur de cette thèse sera également la mise au point de l’instrumentation d’une cuve et de la chaine d’acquisition associée, d’une part pour la validation des modèles, et d’autre part pour la génération d’une base de données pour l’application de la méthodologie.
Capteur quantique-radiofréquence hybridé
A travers l’action exploratoire Carnot SpectroRF, le CEA Leti s’implique dans les systèmes de capteurs radiofréquences à base de spectroscopie optique atomique. L’idée sous-jacente de ce développement repose sur le fait que ces systèmes offrent des performances de détection exceptionnelles. Avec notamment, une sensibilité´ élevée (~nV.cm-1.Hz-0.5), des bandes passantes très larges (MHz- THz), une taille indépendante de la longueur d'onde (~cm) et une absence de couplage avec l'environnement. Ces avantages surpassent les capacités des récepteurs conventionnels a` base d'antennes pour la détection des signaux RF.
L'objectif de cette thèse est d'investiguer une approche hybride pour la réception de signaux radiofréquences, en combinant une mesure de spectroscopie atomique basée sur des atomes de Rydberg avec la conception d'un environnement proche à base de métal et/ou de matériau chargé pour la mise en forme et l'amplification locale du champ, que ce soit par l'utilisation de structures résonantes ou non, ou de structures focalisantes.
Dans le cadre de ces travaux, la question scientifique principale consiste à déterminer les opportunités et limites de ce type d’approche en formulant analytiquement les limites de champs imposables aux atomes de Rydberg, que ce soit en valeur absolue, en fréquence ou dans l’espace, et cela pour une structure donnée. L’approche analytique sera agrémentée de simulations EM pour la conception et la modélisation de la structure associée au banc de spectroscopie optique atomique. La caractérisation finale se fera par mesure dans un environnement électromagnétique contrôlé (chambre anéchoïque).
Les résultats obtenus permettront d'effectuer une comparaison modèle-mesures. Les modélisations analytiques ainsi que les limites théoriques qui en découlent donneront lieu à des publications sur des sujets qui n’ont pas encore fait l'objet d'investigations dans l’état de l’art. Les structures développées dans le cadre de ces travaux de thèse pourront faire l'objet de brevets directement valorisables par le CEA.
Modélisation physique d’une attaque laser sur FD-SOI en vue de la sécurisation des cellules standard du nœud FD-SOI 10 nm
La cybersécurité de nos infrastructures est un maillon essentiel à la transition numérique qui s’opère et la sécurité doit être assurée sur l’ensemble de la chaîne. Les couches basses, matérielles, s’appuient sur du composants microélectroniques assurant les fonctions essentielles pour l’intégrité, la confidentialité et la disponibilité des informations traitées.
Le matériel assurant des fonctions de sécurité peut être soumis à des attaques physiques, utilisant les propriétés du matériel. Certaines de ces attaques sont plus directement liées que d’autres aux caractéristiques physiques des technologies silicium utilisées pour la fabrication des composants. Parmi celles-ci, les attaques utilisant un laser impulsionnel dans l’infra rouge proche est la plus puissante par sa précision et sa répétabilité. Il convient donc de protéger les composants vis-à-vis de cette menace. En sécurité, le développement des protections (on parle aussi de contremesures) est possible quand la menace est modélisée. Si l’effet d’un tir laser dans les technologies bulk traditionnelles est bien modélisé, il ne l’est pas encore suffisamment dans les technologies FD-SOI (une seule publication). Nous savons aujourd’hui que le FD-SOI a une sensibilité moindre à un tir laser, et cela doit s’expliquer par un modèle physique sensiblement différent de celui effectif sur bulk. Or les systèmes embarqués susceptibles d’être visés par des attaques malveillantes (contexte IoT, Bancaire, Idendité etc…) sont aujourd’hui portés sur les technologies FD-SOI. Il devient donc essentiel de consolider la modélisation physique de l’effet d’un tir laser sur un transistor et sur des cellules standard (standard cells : inverseur, NAND, NOR, Flip-Flop, SRAM…). Nous proposons d’allier l’expérimental à une approche TCAD permettant une compréhension fine des effets mis en jeu lors d’un tir laser impulsionnel dans le FD-SOI. Un modèle compact d’un transistor FD-SOI sous impulsion laser sera déduit de cette phase de modélisation physique.
Ce modèle compact sera ensuite injecté dans un design de cellules standards. Cette approche a deux objectifs : porter la modélisation de l’effet d’un tir laser au niveau de design de cellules standards (absolument centrales dans les circuits numériques pour la sécurité). Des données expérimentales (existantes et générées par le doctorant) permettront de valider le modèle à ce niveau d’abstraction. Enfin, et surtout, cette modélisation fine permettra de proposer des designs de cellules standards en technologie FD-SOI 10nm, intrinsèquement sécurisées vis-à-vis d’un tir laser impulsionnel. Cela sera rendu possible par l’exploitation des propriétés de sécurité des technologies FD-SOI.
Contacts: romain.wacquez@cea.fr, jean-frederic.christmann@cea.fr, sebastien.martinie@cea.fr,