Optimisation de la dégradation enzymatique du PLA pour la production de biohydrogène (BioH2) par photofermentation.
Ce projet de thèse propose une approche innovante pour produire du biohydrogène (BioH2) à partir de la dégradation enzymatique du PLA (acide polylactique), un bioplastique difficile à recycler. L’objectif est d’optimiser l’hydrolyse du PLA en acide lactique, un substrat directement métabolisable par des bactéries pourpres non sulfureuses (PNSB) pour générer du BioH2 en conditions anoxygéniques. Le travail consistera à sélectionner des estérases performantes (en collaboration avec le Génoscope CEA), à les exprimer de manière soluble dans des hôtes modèles (E. coli, levures, PNSB), et à optimiser les conditions réactionnelles (pH, température, concentration) pour maximiser la production d’acide lactique. Une seconde phase visera à améliorer la photofermentation dans un photobioréacteur (PBR) équipé de systèmes de contrôle avancés (LED, IA, CFD). Ce projet, financé par le CEA et le PUI Grenoble Alpes, s’inscrit dans une démarche d’économie circulaire et vise à développer un procédé scalable pour valoriser les déchets PLA en énergie renouvelable, en lien avec les enjeux de la transition énergétique
Étude de l’écoulement elliptique des hadrons charmés dans les collisions ions lourds avec LHCb?
Le projet FLOALESCENCE s’inscrit dans le cadre de l’étude expérimentale de la matière de QCD et de la transition de phase entre plasma de quarks et de gluons (QGP) et matière hadronique.?Ce plasma, formé quelques microsecondes après le Big Bang, peut être recréé aujourd’hui dans les collisions plomb-plomb ultra-relativistes au Grand collisionneur de hadrons (LHC).
L’objectif du projet est de comprendre comment les quarks charmés se hadronisent lorsque le QGP se refroidit. Le doctorant travaillera au sein de l’expérience LHCb, un détecteur unique par sa couverture en rapidité avant, permettant d’explorer une région de l’espace des phases encore inexplorée.
Le travail consistera à mesurer pour la première fois à LHCb l’écoulement elliptique (v2) des baryons charmés (?c+) et des mésons (D0), afin de tester les modèles de coalescence et de caractériser le degré de thermalisation des quarks charmés dans le milieu QGP.
Objectifs et missions:
- Extraire et analyser les signaux ?c+ et D0 dans les nouvelles données Pb–Pb enregistrées par LHCb (2024–2025).
- Développer et appliquer une méthode d’analyse innovante de l’écoulement elliptique, fondée sur la reformulation de la méthode des Zéros de Lee–Yang.
- Mettre en place une métrique de multiplicité d’événement pour relier les observables de flux à la densité d’énergie du système.
- Comparer les résultats aux prédictions théoriques et aux mesures des autres expériences du LHC (ALICE, CMS).
Rédiger des publications scientifiques et présenter les résultats lors de conférences internationales.
Le/la doctorant.e acquerra :
- Une maîtrise avancée des outils d’analyse de données du LHCb (ROOT, Python, C++), y compris les techniques de classification par apprentissage automatique.
- Une expertise en physique des hautes énergies et en QCD, notamment sur les propriétés du plasma de quarks et de gluons et les phénomènes collectifs.
- Des compétences en analyse statistique et traitement de grands volumes de données.
- Une solide expérience du travail collaboratif international (au sein de la collaboration LHCb).
- Une formation polyvalente valorisable tant dans la recherche académique que dans les domaines de la data science, de l’ingénierie ou de la modélisation physique.
Effet du rayonnement gamma sur les mémoires non-volatile à base de hafnia pour des applications en environnements extrêmes
L’émergence des mémoires ferroélectriques à base de HfO2 a ouvert un nouveau paradigme pour le calcul embarqué à très basse consommation d’énergie. L’oxyde d’hafnium est pleinement compatible avec la technologie CMOS et est intrinsèquement à basse consommation d’énergie, trois ordres de grandeur plus faible que d’autres technologies émergentes de mémoires non-volatile.
Ces avantages s’alignent avec les applications stratégiques dans l’espace, la défense, le médical, la sûreté nucléaire et le transport lourd, où l’électronique doit faire face aux environnements extrêmes d’irradiation.
L’imprint induit un décalage de la réponse polarisation-tension (P-V) sur l’axe du voltage, attribué au piégeage/dépiégeage de charge, épinglement des domaines et aux défauts chargés tels que les lacunes d’oxygène. Tous ces phénomènes peuvent être accentués par l’irradiation.
Le projet utilisera des techniques avancées de spectroscopie des photoélectrons, notamment la photoémission induite par des rayons X durs avec le rayonnement synchrotron, ainsi que des analyses complémentaires de structure par la microscopie électronique à haute résolution, la diffraction des rayons X et la microscopie en champ proche. Les caractérisations expérimentales seront accompagnées par des calculs théoriques pour simuler la réponse du matériau à l’irradiation.
Ce travail sera développé dans le cadre d’une collaboration étroite entre le CEA/Leti à Grenoble, fournissant les échantillons, les dispositifs intégrés et les caractérisations électriques à l’échelle du wafer, et le CEA/Iramis à Saclay où le doctorant sera basé, pour l’ensemble des analyses des propriétés des matériaux, les irradiations, les expériences avec le rayonnement synchrotron et les caractérisation à l’échelle du dispositif.
Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma
L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse
élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse
par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown
Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur
stoechiométrie.
Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier
l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être
développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de
tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de
structure complexe), d'identifier et de quantifier automatiquement les éléments présents.
En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la
densité de nanoparticules, la distribution de taille ou de forme.
Etude expérimentale et numérique des systèmes de réfrigération cryogénique pour les centrales à fusion de nouvelle génération utilisant des supraconducteurs à haute température
Le défi du réchauffement climatique et la promesse de production d'énergie sans émission de CO2 stimulent le développement de nouveaux et audacieux concepts de réacteurs à fusion nucléaire, qui diffèrent sensiblement de systèmes tels qu'ITER ou JT60-SA [R1]. Ces nouveaux réacteurs à fusion repoussent les limites technologiques en réduisant les coûts d'investissement et d'exploitation en utilisant des aimants à haute température (HTS) pour confiner le plasma [R4]. Ces HTS promettent d'obtenir des champs magnétiques de haute intensité tout en fonctionnant à des températures de refroidissement plus élevées afin de réduire la complexité du refroidissement cryogénique, normalement assuré par circulation forcée d'hélium supercritique à environ 4,5 K (voir 1,8 K pour WEST/Tore Supra) délivré par une usine cryogénique dédiée.
Le fonctionnement pulsé, des tokamaks induit une variation temporelle de la charge thermique absorbée par le système de réfrigération. Ce scénario de fonctionnement a conduit au développement de plusieurs techniques de lissage de charge afin de réduire l'amplitude des variations de charge thermique, réduisant ainsi la taille et la puissance du système de réfrigération, avec des effets bénéfiques sur les coûts et l'impact environnemental. Ces techniques utilisent des bains d'hélium liquide (à environ 4 K) pour absorber et stocker temporairement une partie de l'énergie thermique libérée par l'impulsion de plasma avant de la transmettre à l'installation cryogénique [R5].
L'objectif de cette thèse est de contribuer au développement de concepts innovants pour la réfrigération de grands systèmes HTS à des températures comprises entre 5 et 20 K. Elle comprendra (1) la modélisation des architectures de l'installation cryogénique et de la cryodistribution en fonction de la température du fluide caloporteur, ainsi que (2) l’exploration des techniques de lissage de la charge innovantes en collaboration avec l'Equipe multidisciplinaire "Centrale à Fusion" du PEPR SUPRAFUSION, Le premier volet comportera le développement et l’amélioration d’outils numériques 0D/1D appelé Simcryogenics et basés sur Matlab/Simscape [R6] par l’implémentation de modèles physiques (lois de fermeture) et de choix de modélisation opportune pour analyser et confronter des solutions d’architecture adaptées. Le deuxième volet sera expérimental et comportera la réalisation d’expériences de lissage de la charge à l’aide d’une boucle cryogénique à entre 8 et 15 K existante.
L’activité sera à l'avant-garde de la révolution de la fusion nucléaire actuellement en cours en Europe [R3, R7] et aux États-Unis [R4], abordant un large éventail de domaines de l'ingénierie cryogénique tels que les technologies de réfrigération, l'hélium superfluide, la thermo-hydraulique, les propriétés des matériaux, la conception de systèmes et de sous-systèmes, la conception et réalisation d’essais cryogéniques. Elle sera ainsi utile au développement des nouvelles générations d’accélérateurs de particules utilisant des aimants HTS.
[R1] Cryogenic requirements for the JT-60SA Tokamak https://doi.org/10.1063/1.4706907]
[R2] Analysis of Cryogenic Cooling of Toroidal Field Magnets for Nuclear Fusion Reactorshttps://hdl.handle.net/1721.1/144277
[R3] https://tokamakenergy.com/our-fusion-energy-and-hts-technology/fusion-energy-technology/
[R4] https://tokamakenergy.com/our-fusion-energy-and-hts-technology/hts-business/
[R5] “Forced flow cryogenic cooling in fusion devices: A review” https://doi.org/10.1016/j.heliyon.2021.e06053
[R6] “Simcryogenics: a Library to Simulate and Optimize Cryoplant and Cryodistribution Dynamics”, 10.1088/1757-899X/755/1/012076
[R7] https://renfusion.eu/
[R8] PEPR Suprafusion https://suprafusion.fr/
Sonder l’information quantique avec le quark top au LHC
Ce projet de doctorat vise à explorer la nature quantique de la production de paires de quarks top au LHC, en étudiant les corrélations de spin et les observables liées à l’intrication quantique dans les données enregistrées par l’expérience ATLAS. Les récentes avancées ayant permis d’observer l’intrication dans les événements top–antitop ont ouvert une nouvelle fenêtre sur l'étude de la structure quantique des interactions fondamentales, faisant du LHC une machine capable de sonder l’information quantique à l’échelle du TeV. La thèse se concentrera sur la reconstruction de l’état quantique des paires de quarks top à partir des données du Run 3 d’ATLAS, avec une attention particulière portée à l’extraction des corrélations de spin et des observables sensibles à l’intrication quantique dans des topologies à haute impulsion. En améliorant les stratégies de reconstruction et en évaluant soigneusement les effets du détecteur, l’objectif est de déterminer les propriétés quantiques de la paire de quarks top avec précision et ainsi de contribuer à comprendre ce que l’information quantique peut apporter à notre connaissance des particules élémentaires.
Métamatériaux légers et résistants à architectures innovantes fabriqués par fabrication additive pour environnements contraints
Les contraintes environnementales, la hausse des coûts des matières premières et la nécessité de réduire l’empreinte carbone incitent à concevoir des matériaux plus poreux, alliant légèreté et tenue mécanique. Ces matériaux répondent aux besoins de secteurs stratégiques tels que l’aéronautique, le spatial, les transports, l’énergie et les instruments de physique de haute performance.
Les métamatériaux mécaniques, constitués de structures en microtreillis obtenues par impression 3D, offrent un potentiel unique pour relever ces défis. En modulant la topologie de leurs réseaux internes, il devient possible d’atteindre des rapports rigidité/densité supérieurs à ceux des matériaux conventionnels et d’adapter leur architecture pour viser des propriétés mécaniques ou fonctionnelles spécifiques.
Cette thèse s’inscrit dans cette dynamique d’innovation. Elle vise à développer des métamatériaux métalliques ultralégers dont l’architecture est optimisée pour maximiser les performances mécaniques tout en conservant une isotropie assurant un comportement prévisible grâce aux outils classiques d’ingénierie, notamment le calcul par éléments finis, la simulation numérique et les approches multiéchelles. L’approche s’appuie sur une expertise reconnue au sein du CEA, en particulier à l’IRAMIS et à l’IRFU/DIS, dans la conception de métastructures aléatoires isotropes et leur mise en forme par fabrication additive métallique.
En combinant mécanique numérique, conception avancée, fabrication additive multiprocédés et caractérisations in situ, cette thèse vise à repousser les limites actuelles de la conception et de la fabrication de structures métalliques complexes.
Synthèse « bottom-up » de nanographène et étude de leurs propriétés optiques et électroniques
Ce projet s’inscrit dans le cadre d’un projet ANR, qui vise à synthétiser des nanoparticules de graphène parfaitement solubles et individualisées en solution et à les incorporer dans des dispositifs à électronique de spins. Pour cela, nous nous baserons sur l’expérience du laboratoire sur la synthèse et l’études des propriétés optiques des nanoparticules de graphène pour proposer des structures originales à plusieurs groupes de physiciens qui seront en charges de l’étude des propriétés optiques et électroniques et de la fabrication de dispositifs de type valve de spin.
RECHERCHES D’EMISSION DIFFUSES EN RAYONS GAMMA DE TRES HAUTE ENERGIE ET PHYSIQUE FONDAMENTALE AVEC H.E.S.S. ET CTAO
Les observations en rayons gamma de très hautes énergies (THE, E>100 GeV) sont cruciales pour la compréhension des phénomènes non-thermiques les plus violents à l’œuvre dans l’Univers. La région centre de la Voie Lactée est une région complexe et active en rayons gamma de THE. Parmi les sources gamma de THE se trouvent le trou noir supermassif Sagittarius A* au coeur de la Galaxie, des vestiges de supernova ou encore des régions de formation d'étoiles. Le centre Galactique (CG) abrite un un accélérateur de rayons cosmiques jusqu’à des énergies du PeV, des émissions diffuses du GeV au TeV dont le « Galactic Center Excess » (GCE) dont l’origine est encore inconnue, de potentielles sources variables au TeV, ainsi que possibles populations de sources non encore résolues (pulsars millisecondes, trous noirs de masses intermédiaires). Le CG devrait être la source la plus brillante d’annihilations de
particules massives de matière noire de type WIMPs. Des candidats matière noire plus légers, les particules de type axions (ALP), pourraient se convertir en photons, et vice versa, dans les champs magnétiques laissant une empreinte d’oscillation dans les spectres gamma de noyaux actifs de galaxies (AGN).
L'observatoire H.E.S.S. situé en Namibie est composé de cinq télescopes imageurs à effet Cherenkov atmosphérique. Il est conçu pour détecter des rayons gamma de quelques dizaines de GeV à plusieurs dizaines de TeV. La région du Centre Galactique est observée par H.E.S.S. depuis vingt ans. Ces observations ont permis de détecter le premier Pevatron Galactique et de poser les contraintes les plus fortes à ce jour sur la section efficace d'annihilation de particules de matière noire dans la plage en masse du TeV. Le futur observatoire CTA sera déployé sur deux sites, l'un à La Palma et l'autre au Chili. Ce dernier composé de plus de 50 télescopes permettra d'obtenir un balayage sans précédent de la région sur Centre Galactique.
Le travail proposé portera sur l'analyse et l'interprétation des observations H.E.S.S. conduites dans la région du Centre Galactique pour la recherche d'émission diffuses (populations de sources non résolues, matière noire massive) ainsi que des observations menées vers un sélection de noyaux actifs de galaxie pour la recherche d'ALPs constituant la matière noire. Ces nouveaux cadres d'analyses seront implémentés pour les analyses CTA à venir. Une implication dans la commissioning des premiers MSTs au Chili ainsi que dans l’analyse des premières données scientifiques sont attendues.
Simulation à grande échelle et apprentissage automatique dans la structure du nucléon?
Cette proposition de thèse porte sur la structure tridimensionnelle du nucléon à travers les distributions de partons généralisées (GPD). Les GPD permettent d’accéder à la répartition spatiale des quarks et gluons ainsi qu’au tenseur énergie-impulsion, offrant ainsi des informations sur le spin, la pression interne et la masse du nucléon. Deux défis majeurs sont identifiés?: le manque de données expérimentales et la difficulté à générer des observables simulées précises via le calcul sur réseau. Le projet se décline en deux volets?: (I) produire de nouvelles simulations de QCD sur réseau de moments de GPD, améliorer les algorithmes et assurer l’extrapolation vers le continuum?; (II) développer des méthodes d’apprentissage automatique pour résoudre les problèmes inverses mal posés et réaliser des ajustements globaux combinant données expérimentales et simulation. La thèse sera réalisée conjointement entre Julich Forschungszentrum (Allemagne) et le CEA (France) au travers du laboratoire virtuel AIDAS, avec un partage du temps entre les deux pays. Les compétences attendues incluent la théorie quantique des champs, la programmation (C++, Python) et une bonne maîtrise du calcul haute performance. Le but du travail est d'obtenir la première extraction fiable de la structure 3D du nucléon, utile pour les futurs collisionneurs EIC/EicC.