Spectroscopie attoseconde de photoémission des gaz moléculaires et des liquides

L'objectif de cette thèse est de développer la spectroscopie de photoémission attoseconde des molécules en phases gazeuse et liquide à l'aide d'un nouveau système laser Ytterbium haute cadence. Ces études permettront de dévoiler en temps réel les processus de photoionisation en couche interne/externe et la dynamique de diffusion électronique.

Modélisation multi-échelle de l’émission d’ions de terres rares à partir de liquides ioniques sous champ électrique intense

L’objectif principal de cette thèse est de modéliser les mécanismes d’émission d’ions de terres rares à partir de liquides ioniques soumis à un champ électrique intense, afin d’identifier les conditions favorables à l’émission d’ions faiblement complexés.
Il s'agira d’établir des critères rationnels pour la conception de nouvelles sources ILIS adaptées à l’implantation localisée de terres rares dans des dispositifs photoniques.
Le travail de thèse s’appuiera sur des simulations de dynamique moléculaire à grande échelle, reproduisant la région d’émission d’un cône de Taylor sous champ électrique.
Les simulations seront confrontées aux expériences d’émission menées en parallèle dans le groupe SIMUL en collaboration avec Orsay Physics TESCAN, utilisant une source ILIS prototype dopée en terres rares. Les comparaisons des mesures (spectrométrie de masse, distribution énergétique) permettront d’ajuster les modèles et de valider les mécanismes proposés.

Étude de la fission de l’uranium-235 induite par des neutrons de 0.5 à 40 MeV à NFS-SPIRAL2 avec le spectromètre FALSTAFF et le code FIFRELIN

Le projet présenté ici a un objectif double. Il s’agira pour notre équipe de réaliser (étalonnage, montage, prise et analyse des données) une première expériénce avec le détecteur FALSTAFF dans sa configuration à deux bras de détection. Une telle géométrie permettra la mesure en coïncidence des deux fragments émis par la fission déclenché par des neutrons rapides (entre 0,5 et 40 MeV environ sur la ligne de neutrons de SPIRAL2-NFS). L’utilisation de la cinématique directe permet de contrôler évènement par évènement la réaction détectée, notamment l’énergie d’excitation du noyau qui fissionne par la détermination de l’énergie cinétique du neutron incident.
Pour cette première expérience, nous employerons une cible de 235U, dont la fission dans les réacteurs nucléaires est au coeur de leur principe de production d’énergie. Ainsi, une compréhension extrêmement détaillée de la fission de ce noyau déclenchée par les neutrons est indispensable. Cette mesure complète qui inclura non seulement l’identification des deux fragments de fission mais également la détermination de leur cinématique sera pratiquement une première scientifique dans la méthode de la cinématique directe où le faisceau de neutrons et dirigé sur la cible d’uranium. Pour permettre cette expérience, recommandée par le comité du GANIL et qui se fera en 2026, nous avons fait évoluer le spectromètre FALSTAFF améliorer ses performances de détection, notamment grâce au financement que la région Normandie nous a octroyé. Ce travail expérimental se complètera d’un travail détaillé sur un modèle théorique de la fission développé par nos collaborateurs du CEA-Cadarache auquel nos données avec FALSTAFF serviront de point de comparaison précis. Le test de ce modèle sur des données aussi complètes que celles de FALSTAFF n’a encore pas été réalisé.

Time-tagging précis et tracking des leptons dans des faisceaux de neutrinos de nouvelle génération avec des détecteurs PICOSEC-Micromegas de grande surface.

Le projet ENUBET (Enhanced NeUtrino BEams from kaon Tagging) vise à développer un faisceau de neutrinos « monitoré » dont le flux et la composition en saveurs sont connus avec une précision au pourcent près, afin de permettre des mesures de sections efficaces de neutrinos d’une précision inédite. Pour cela, le tunnel de désintégration est instrumenté pour détecter et identifier les leptons chargés issus des désintégrations de kaons.
Le Micromegas PICOSEC est un détecteur gazeux à microstructures rapide et à double étage d’amplification, combinant un radiateur Tcherenkov, une photocathode et une structure Micromegas. Contrairement aux Micromegas classiques, l’amplification s’y produit également dans la région de dérive, où le champ électrique est plus intense que dans la région d’amplification principale. Cette configuration permet d’atteindre des résolutions temporelles exceptionnelles, de l’ordre de 12 ps pour les muons et d’environ 45 ps pour les photoélectrons uniques, faisant du PICOSEC l’un des détecteurs gazeux les plus rapides jamais réalisés.
L’intégration de modules Micromegas PICOSEC de grande surface dans le tunnel de désintégration d’ENUBET permettrait un horodatage des leptons avec une précision inférieure à 100 ps, améliorant l’identification des particules, réduisant le pile-up, et facilitant la corrélation entre les leptons détectés et leurs kaons parents — une étape clé vers des faisceaux de neutrinos à flux contrôlé avec précision.
Dans le cadre de cette thèse, le candidat ou la candidate participera à l’optimisation et à la caractérisation de prototypes Micromegas PICOSEC de 10 × 10 cm², ainsi qu’à la conception et au développement de détecteurs de plus grande surface pour l’expérience nuSCOPE et l’instrumentation du hadron dump d’ENUBET.

Jonctions Tunnel Magnétiques aux limites

L'électronique de spin, grâce au degré de liberté supplémentaire apporté par le spin de l'électron, permet de déployer une physique du magnétisme à petite échelle très riche, mais également d'apporter des solutions technologiques de ruptures dans le domaine de la microélectronique (stockage, mémoire, logique...) ainsi que pour la mesure du champ magnétique.
Dans le domaine des sciences du vivant et de la santé, des dispositifs à base de magnétorésistance géante (GMR) ont fait la démonstration de la possibilité de mesurer à échelle locale les champs très faibles produits par les cellules excitables (Caruso et al, Neuron 2017, Klein et al, Journal of Neurophysiology 2025).
La mesure de l'information contenue dans la composante magnétique associée aux courants neuronaux (ou magnétophysiologie) peut en principe donner un descriptif du paysage neuronal dynamique, directionnel et différentiant. Elle pourrait ouvrir la voie à de nouvelles modalités dans les implants, grâce à leur immunité à la gliose et à leur longévité.
Le verrou actuel est la très petite amplitude du signal produit (<1nT) qui nécessite de moyenner le signal pour le détecter.
Les magnéto-résistances tunnel (TMR), dans lesquelles est mesuré un courant tunnel polarisé en spin, présentent des performances de sensibilité de plus d'un ordre de grandeur par rapport au GMR. Elles présentent cependant actuellement un niveau de bruit à basse fréquence trop élevée pour en tirer tout le bénéfice, notamment dans le cadre de la mesure de signaux biologiques.
L'objectif de cette thèse est de repousser les limites actuelles des TMR, en réduisant le bruit à basse fréquence, pour les positionner comme capteurs de rupture pour la mesure de signaux très faibles, et pour leur potentiel d'amplificateur de petits signaux.
Pour atteindre cet objectif, une première voie reposant sur l'exploration des matériaux composant la jonction tunnel, en particulier ceux de la couche magnétique dite libre, ou sur l'amélioration de la cristallinité de la barrière tunnel, sera déployée. Une seconde voie, consistant à étudier les propriétés intrinsèques du bruit à basse fréquence, en particulier dans des limites jusque-là inexplorées, en très basses températures où les mécanismes intrinsèques sont atteints, permettra de guider les solutions les plus prometteuses.
Enfin, les structures et approches les plus avancées sur l'état de l'art ainsi obtenues seront intégrées à des dispositifs permettant d'une part d'avoir des briques de base pour au delà de l'état de l'art et offrant de nouvelles possibilité pour les applications de l'électronique de spin. D'autre part, ces éléments seront intégrés à des systèmes pour la cartographie en 2D (voire 3D) de l'activité d'un système biologique global (réseau neuronal) et d’évaluer les capacités pour des cas cliniques (comme l’épilepsie ou la réhabilitation motrice).
Il est à noter que ces TMR améliorées pourront avoir d’autres applications dans les domaines d’instrumentation physique, de contrôle non destructif ou d’imagerie magnétique.

Observateurs explicables et IA interprétable pour accélérateurs supraconducteurs et identification d’isotopes radioactifs

Les accélérateurs du GANIL, SPIRAL1 et SPIRAL2, génèrent des données complexes dont l’interprétation reste difficile. SPIRAL2 souffre d’instabilités dans ses cavités supraconductrices, tandis que SPIRAL1 requiert une identification fiable des isotopes dans des conditions bruitées.
Ce projet de thèse vise à développer une IA interprétable fondée sur la théorie des observateurs, combinant modèles physiques et apprentissage automatique pour détecter, expliquer et prédire les anomalies. En intégrant des approches causales et des outils d’explicabilité comme SHAP et LIME, il renforcera la fiabilité et la transparence du fonctionnement des accélérateurs.

Excitations électroniques dans des nano-objets unidimensionels : description ab initio et connection avec l’intrication quantique

La compréhension des propriétés électroniques des électrons de valence dans les nano-objets est à la fois d’un intérêt fondamental et essentielle pour la conception de nouveaux dispositifs optoélectroniques. Dans ces systèmes, le confinement des électrons en basse dimensionnalité leur confère des propriétés exceptionnelles.
Ces propriétés sont liées aux caractéristiques fondamentales de la matière et aux fluctuations quantiques associées. Récemment, l’intrication quantique et l’information quantique de Fisher ont été directement mises en relation avec des propriétés spectroscopiques. Part ailleurs, ces propriétés spectroscopiques sont accessibles par des expériences, telles que l’absorption, la photoémission et la diffusion inélastique des rayons X.
Récemment, nous avons montré que le formalisme largement utilisé pour étudier les nano-objets isolés n’était pas adapté, et que les propriétés optiques qui en avaient été déduites en étaient affectées. Nous avons mis en évidence, théoriquement et expérimentalement, que dans les objets bidimensionnels la réponse optique contenait, en plus de la contribution transverse, une résonance de type plasmon, correspondant à une réponse longitudinale. Le rôle de l’interface s’est révélé déterminant. Le projet que nous proposons cette année consiste à reconsidérer les propriétés optiques des objets unidimensionnels.
Une fois la méthodologie établie pour décrire la fonction diélectrique macroscopique en 1D, nous explorerons ses liens avec l’intrication quantique et l’information quantique de Fisher, qui n’ont encore jamais été évaluées pour des systèmes à basse dimensionnalité.

Origines et évolution des protéines de type prion (PrLP) chez les eucaryotes

Initialement associées aux maladies neurodégénératives, les protéines de type prion (PrLP) sont aujourd’hui reconnues comme des acteurs physiologiques majeurs de la plasticité cellulaire et de la réponse au stress. Ces protéines possèdent souvent un domaine intrinsèquement désordonné riche en glutamine et asparagine, dit prion-like domain (PrLD), capable de basculer entre états solubles, condensés ou amyloïdes. Des exemples emblématiques incluent CPEB chez l’Aplysie, impliquée dans la mémoire synaptique, MAVS dans la réponse antivirale, MED15 et FUS dans la régulation transcriptionnelle et la dynamique des condensats nucléocytoplasmiques, ou encore ELF3 chez les plantes, dont la polymérisation amyloïde contrôle la floraison et la photopériode. Chez les champignons, les protéines Sup35, Ure2p et HET-s constituent des modèles expérimentaux de prions fonctionnels, montrant que l’agrégation réversible peut servir de mécanisme de régulation ou d’adaptation. Ces transitions conformationnelles sont désormais perçues comme des réponses adaptatives, et non comme des dérives pathologiques. Cette thèse vise à retracer l’origine et la diversification des protéines de type prion à l’échelle des eucaryotes, en testant l’hypothèse selon laquelle les grandes crises paléoclimatiques ont favorisé l’apparition et la duplication de gènes codant des domaines PrLD via l’expansion de microsatellites et l’activité des éléments transposables. Le projet combinera analyses phylogénomiques, détection de domaines PrLD et modélisation des pressions de sélection, afin de cartographier les grandes étapes de l’évolution fonctionnelle des PrLP et leur lien avec la tolérance au stress.

Structures des réseaux et dynamiques de développement - de la révolution industrielle à la transition énergétique

Les réseaux énergétiques sont des éléments essentiels de toute stratégie climatique et énergétique réussie. Néanmoins, ils restent peu étudiés et insuffisamment compris dans leur dynamique ainsi que dans leur relation avec la consommation des ressources et la prospérité économique.
Dans ce projet de doctorat, plusieurs cas historiques de construction et d'utilisation de réseaux physiques, liés à la consommation d'énergie, seront explorés dans une approche d'écologie industrielle, avec des liens interdisciplinaires forts vers l'histoire économique, la géographie et la physique statistique des réseaux et des systèmes complexes. Comment les investissements énergétiques et matériels dans les éléments du réseau influencent-ils le développement et l'utilisation ultérieure du système pour distribuer les ressources ? La dynamique globale de la consommation d'énergie dépend-elle du type de réseau impliqué dans la croissance physique ?
Une première cible sera les chemins de fer qui se sont développés dans le monde entier au 19ème siècle en relation avec l'extraction, l'utilisation et la commercialisation du charbon. D'autres réseaux seront également étudiés tels que : le réseau routier au 20ème siècle en relation avec le pétrole ; les oléoducs et gazoducs ; les réseaux couplés gaz-chaleur-électricité. L'étude prendra également en compte le double rôle des chemins de fer et des réseaux routiers qui assurent le transport des passagers ainsi que le fret des ressources énergétiques et matérielles.

Méthodes pour la détection rapide d’évènements gravitationnels à partir des données LISA

La thèse porte sur le développement de méthodes d’analyse rapide pour la détection et la caractérisation des ondes gravitationnelles, en particulier dans le cadre de la future mission spatiale LISA (Laser Interferometer Space Antenna) prévue par l’ESA vers 2035.L’analyse des données fait intervenir différentes étapes dont l’une des premières est le « pipeline » d’analyse rapide, dont le rôle est la détection de nouveaux évènements, ainsi que la caractérisation d’évènements. Le dernier point a trait à l’estimation rapide de la position dans le ciel de la source d’émission d’ondes gravitationnelles, et de leur temps caractéristique tel que le temps de coalescence pour une fusion de trous noirs par exemple. Ces outils d'analyse forment le pipeline d'analyse à faible latence (low-latency pipeline). Au-delà de l’intérêt pour LISA, celui-ci joue également un rôle primordial pour le suivi rapide des évènements détectés par des observations électromagnétiques (observatoires au sol ou spatiaux, des ondes radio aux rayons gamma). Si des méthodes d’analyse rapides ont été développées pour les interféromètres au sol, le cas des interféromètres spatiaux tels que LISA reste un champ à explorer. Ainsi, un traitement adapté des données devra prendre en compte le mode de transmission des données par paquet, nécessitant ainsi la détection d’évènements à partir de données incomplètes. À partir de données entachées d’artefacts tels que des glitches, ces méthodes devront permettre la détection, la discrimination et l’analyse de sources diverses
Dans cette thèse, nous proposons de développer une méthode robuste et performante pour la détection précoce de binaires de trous noirs massifs (MBHBs). Cette méthode devra permettre la prise en compte du flux de données tel qu’attendu dans le cadre de LISA, traité de potentiels artefacts (e.g. bruit non-stationnaire et glitches). Elle permettra la production d’alarmes, incluant un indice de confiance de la détection ainsi qu’une première estimation des paramètres de la source (temps de coalescence, position dans le ciel et masse de la binaire) ; une première estimation rapide est essentielle pour initialiser au mieux une estimation plus précise mais plus couteuse de l’estimation de paramètres.

Top