Inférence des paramètres cosmologiques à l’aide de prédictions théoriques des statistiques en ondelettes.

Lancé en 2023, le satellite Euclid observe le ciel dans les longueurs d'onde optiques et infrarouges pour cartifier la structure à grande échelle de l'Univers avec une précision inédite. Un pilier fondamental de sa mission est la mesure du cisaillement gravitationnel faible — de subtiles distorsions dans la forme des galaxies lointaines. Ce phénomène constitue une sonde cosmologique puissante, capable de retracer l'évolution de la matière noire et d'aider à distinguer les théories sur l'énergie noire de celles de la gravité modifiée. Traditionnellement, les cosmologues analysent les données de cisaillement faible à l'aide de statistiques du second ordre (comme le spectre de puissance) couplées à un modèle de vraisemblance gaussien. Cette approche établie rencontre cependant des défis significatifs :
- Perte d'information : Les statistiques du second ordre ne capturent toute l'information disponible que si la distribution de matière sous-jacente est gaussienne. En réalité, la toile cosmique est une structure complexe, composée d'amas, de filaments et de vides, ce qui rend cette approche intrinsèquement incomplète.
- Covariance complexe : La méthode nécessite l'estimation d'une matrice de covariance, qui est à la fois dépendante de la cosmologie et non-gaussienne. Ceci exige de réaliser des milliers de simulations numériques de type N-corps, extrêmement coûteuses en calcul, pour chaque modèle cosmologique, un effort souvent prohibitif.
- Effets systématiques : L'intégration des complications observationnelles — telles que les masques de survey, l'alignement intrinsèque des galaxies, et les effets de rétroaction baryonique — dans ce cadre théorique est notoirement difficile.

Face à ces limitations, un nouveau paradigme a émergé : l'inférence sans vraisemblance par modélisation directe (forward modelling). Cette technique contourne le besoin d'une matrice de covariance en comparant directement les données observées à des observables synthétiques générés par un modèle direct (forward model). Ses avantages sont profonds : elle élimine le fardeau de stockage et de calcul lié aux vastes ensembles de simulations, intègre naturellement l'information statistique d'ordre supérieur, et permet d'inclure de manière transparente les effets systématiques. Cependant, cette nouvelle méthode présente ses propres obstacles : elle demande des ressources de calcul (GPU) immenses pour traiter des surveys de l'envergure d'Euclide, et ses conclusions ne sont aussi fiables que les simulations sur lesquelles elle s'appuie, ce qui peut mener à des débats circulaires si les simulations et les observations divergent.

Une percée récente (Tinnaneni Sreekanth, 2024) ouvre une voie prometteuse. Ces travaux fournissent le premier cadre théorique permettant de prédire directement les principales statistiques en ondelettes des cartes de convergence — exactement le type de cartes qu'Euclide produira — pour un jeu de paramètres cosmologiques donné. Il a été démontré dans Ajani et al. (2021) que la norme L1 des coefficients en ondelettes est extrêmement puissante pour contraindre les paramètres cosmologiques. Cette innovation promet d'exploiter la puissance des statistiques non-gaussiennes avancées sans le surcoût computationnel traditionnel, ouvrant potentiellement la voie à une nouvelle ère de cosmologie de précision.
Nous avons démontré que cette prédiction théorique peut être utilisée pour construire un émulateur hautement efficace (Tinnaneni Sreekanth et al., 2025), accélérant considérablement le calcul de ces statistiques non-gaussiennes. Il est crucial de noter qu'à son stade actuel, cet émulateur ne fournit que la statistique moyenne et n'inclut pas la variance cosmique. En l'état, il ne peut donc pas encore être utilisé seul pour une inférence statistique complète.

Objectif de cette thèse de doctorat:
Cette thèse de doctorat vise à révolutionner l'analyse des données de cisaillement faible en construisant un cadre complet et intégré pour l'inférence cosmologique sans vraisemblance. Le projet commence par adresser le défi fondamental de la stochasticité : nous calculerons d'abord la covariance théorique des statistiques en ondelettes, fournissant une description mathématique rigoureuse de leur incertitude. Ce modèle sera ensuite intégré dans un générateur de cartes stochastiques, créant ainsi des données synthétiques réalistes qui capturent la variabilité intrinsèque de l'Univers.
Pour garantir la robustesse de nos résultats, nous intégrerons une suite complète d'effets systématiques — tels que le bruit, les masques observationnels, les alignements intrinsèques et la physique baryonique — dans le modèle direct. Le pipeline complet sera intégré et validé au sein d'un cadre d'inférence basée sur les simulations, en testant rigoureusement sa capacité à retrouver des paramètres cosmologiques non biaisés. L'aboutissement de ce travail sera l'application de notre outil validé aux données de cisaillement faible d'Euclide, où nous exploiterons l'information non-gaussienne pour poser des contraintes compétitives sur l'énergie noire et la gravité modifiée.

References
V. Ajani, J.-L. Starck and V. Pettorino, "Starlet l1-norm for weak lensing cosmology", Astronomy and Astrophysics,  645, L11, 2021.
V. Tinnaneri Sreekanth, S. Codis, A. Barthelemy, and J.-L. Starck, "Theoretical wavelet l1-norm from one-point PDF prediction", Astronomy and Astrophysics,  691, id.A80, 2024.
V. Tinnaneri Sreekanth, J.-L. Starck and S. Codis, "Generative modeling of convergence maps based in LDT theoretical prediction", Astronomy and Astrophysics,  701, id.A170, 2025.

Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique

Depuis la fin de la seconde guerre mondiale, le recours aux plastiques pétrosourcés a favorisé l’émergence d’un modèle de consommations axé sur l’utilisation de produits jetables et la production mondiale de plastiques atteint désormais468 millions de tonnes par an. Ces plastiques, non biodégradables, sont à l’origine de nombreuses pollutions environnementales. Depuis les années 50, seulement 9 % de ces déchets ont fait l'objet d'un processus de recyclage. La majorité a été incinérée ou stockée en décharge. Dans le contexte actuel de cette économie linéaire, les enjeux sanitaires, climatiques et sociétaux rendent indispensable une transition vers une approche circulaire des matières. Cette évolution implique le développement de voies de recyclage à la fois efficaces et robustes. Alors que les voies de recyclage actuelles les plus répandues sont principalement des procédés mécaniques qui s’appliquent à des gisements particuliers de déchets, comme les bouteilles en plastique PET, le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. Ces procédés chimiques innovants permettent de récupérer la matière carbonée des plastiques pour en produire de nouveaux.
Le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux seront développés, et nous chercherons à comprendre leur mode de fonctionnement.

Cacracterisation et calibration de détecteurs cryogéniques à l'échelle de 100 eV pour la détection de la diffusion cohérente des neutrinos (CEvNS)

DESCRIPTIONS:

L’expérience NUCLEUS [1] cherche à détecter les neutrinos de réacteur via la diffusion élastique cohérente neutrino-noyau (CEvNS). Prédit en 1974 et mis en évidence pour la première fois en 2017, ce processus donne accès à des tests inédits du modèle standard à basse énergie. La cohérence de la diffusion sur l’ensemble du noyau augmente de plusieurs ordres de grandeurs sa section efficace ce qui en fait également une opportunité pour la surveillance des réacteurs par les neutrinos. Le dispositif expérimental de NUCLEUS est en cours d’installation auprès des réacteurs EDF de Chooz (Ardennes, France) qui sont une source intense de neutrinos. Le seul signal physique d’un événement CEvNS est l’infime recul du noyau cible, avec une énergie très faible, inférieure à 1 keV. Pour le détecter NUCLEUS utilise des cristaux de CaWO4 d’environ 1 g, placés dans un cryostat qui les refroidis à une température de 15 mK. Le recul du noyau provoque des vibrations du réseau cristallin équivalentes à une élévation de la température de ~100 µK, mesurée à l’aide d’un capteur Transition Edge Sensor (TES) déposé sur le cristal. Ces détecteurs permettent d’atteindre d’excellentes résolutions en énergie de seulement quelques ~eV et des seuils de détection de l’ordre de ~10 eV [2]. Le dispositif expérimental de NUCLEUS a été testé et validé en 2024 à TU-Munich [3] et la prisse de données à Chooz commencera à l’été 2026, en même temps que la thèse. Une première contribution portera sur l’acquisition des données sur site réacteur et leur analyse. Plus spécifiquement, l’étudiant(e) sera en charge de la caractérisation des détecteurs cryogéniques en CaWO4 déployés : stabilité, résolution en énergie, calibration et bruit de fond intrinsèque au cristal.

La question de la calibration à l’échelle sub-keV est un point crucial des expériences de CEvNS (et de matière noire). Or jusqu’à présent il était très difficile de générer des reculs nucléaires d’énergie connue pour caractériser la réponse des détecteurs. La méthode CRAB [4,5] répond à ce besoin en utilisant la réaction de capture de neutrons thermiques (énergie de 25 meV) sur les noyaux constituant le détecteur cryogénique. Le noyau composé résultant a une énergie d’excitation bien connue, l’énergie de séparation d’un neutron, comprise entre 5 et 8 MeV selon les isotopes. Dans le cas où il se désexcite en émettant un seul photon gamma, le noyau va reculer avec une énergie qui est aussi parfaitement connue car donnée par la cinématique à deux corps. Un pic de calibration, dans la gamme recherchée de quelques 100 eV, apparaît alors dans le spectre en énergie du détecteur cryogénique. Une première mesure réalisée, en 2022, avec un détecteur en CaWO4 de l’expérience NUCLEUS et une source de neutrons commerciale (252Cf) a permis de valider la méthode [6].

La deuxième partie de la thèse s’inscrit dans la phase « haute précision » de ce projet qui consiste à réaliser des mesures avec un faisceau pur de neutrons thermiques du réacteur TRIGA-Mark-II à Vienne (TU-Wien, Autriche). Le dispositif expérimental de calibration a été installé et caractérisé avec succès en 2025 [7]. Il consiste en un cryostat contenant les détecteurs cryogéniques à caractériser, entouré de larges cristaux de BaF2 pour une détection en coïncidence du recul nucléaire et du rayon gamma qui a induit ce recul. L’ensemble est placé directement sur l’axe du faisceau qui fournit un flux d’environ 450 n/cm2/s. Cette méthode de coïncidence réduira significativement le bruit de fond et permettra d’étendre la méthode CRAB à un plus large domaine d’énergie et aux matériaux constitutifs de la plupart des détecteurs cryogéniques. Nous attendons de ces mesures une caractérisation unique de la réponse des détecteurs cryogéniques, dans un domaine d’intérêt pour la recherche de la matière noire légère et la diffusion cohérente de neutrinos. En parallèle de la mesure de reculs nucléaires, l’installation d’une source de rayons X de basse énergie dans le cryostat permettra de générer des reculs électroniques ce qui mènera à la comparaison directe de la réponse du détecteur à des dépôts d’énergie sous le keV produits par des reculs nucléaires et d’électrons.

L’arrivée en thèse de l’étudiant(e) coïncidera avec la finalisation du programme de mesure sur les détecteurs en CaWO4 et Al2O3 de NUCLEUS et avec le début du programme de mesures sur le Ge (détecteur du projet TESSERACT) ainsi que sur le Si (détecteur du projet BULLKID).
La haute précision permettra également l’ouverture d’une fenêtre de sensibilité à des effets fins couplant de la physique nucléaire (temps de désexcitation du noyau) et de la physique du solide (temps de recul du noyau dans la matière, création de défauts cristallins lors du recul d’un noyau) [8].

L’étudiant(e) sera fortement impliqué dans tous les aspects de l’expérience : la simulation, l’analyse et l’interprétation des résultats obtenus.

ETAPES DU TRAVAIL:

L’étudiant(e) participera activement aux prises de données et à l’analyse des premiers résultats des détecteurs cryogéniques en CaWO4 de NUCLEUS à Chooz. Ce travail sera réalisé en collaboration avec les groupes des départements de physique nucléaire (DPhN), de physique des particules (DPhP) du CEA-Saclay et avec l’équipe de TU-Munich. Il commencera par une prise en main du code d’analyse CAIT pour les détecteurs cryogéniques. L’étudiant(e) étudiera plus spécifiquement les aspects de calibration via la réponse des détecteurs aux reculs électroniques issus de pulses de photons optiques injectés par fibres et de rayons X de fluorescence induits par les rayons cosmiques. Une fois cette calibration établie deux types de bruit de fond seront étudiés : les reculs nucléaires induits dans la gamme du keV par les neutrons rapides cosmogéniques et un bruit fond à basse énergie, appelé Low Energy Excess (LEE), intrinsèque au détecteur. La comparaison en les spectres expérimentaux et simulés du bruit de fond de neutrons rapides sera discutée à la lumière des différences entre réponses nucléaires et électroniques mesurées dans le projet CRAB. Les longues périodes de prises de données sur le site de Chooz seront mises à profit pour étudier l’évolution temporelle du bruit LEE. Ce travail se fera dans le cadre d’une collaboration en cours avec des spécialistes de la physique des matériaux de l'Institut des Sciences Appliquées et de la Simulation (CEA/ISAS) pour comprendre l’origine du LEE, qui reste une question ouverte majeure dans la communauté des détecteurs cryogéniques.

Les compétences d’analyse acquises sur NUCLEUS seront ensuite mises à profit pour les campagnes de mesures CRAB de haute précision prévues en 2027 auprès du réacteur TRIGA (TU-Wien) avec des détecteurs en Ge et Si.L’étudiant(e) sera fortement impliqué(e) dans la mise en place de l’expérience, dans la prise de données et l’analyse des résultats. Ces mesures prévues sur le Ge dans les canaux phonon et ionisation, ont le potentiel de lever l’ambiguïté actuelle sur le rendement d’ionisation des reculs nucléaires à basse énergie, qui sera un facteur déterminant de la sensibilité des expériences.

La haute précision de la calibration sera également exploitée pour étudier des effets fins de physique nucléaire et du solide (effets de timing et de création de défauts cristallins par le recul du noyau dans le détecteur). Cette étude sera réalisée en synergie avec les équipes de l’IRESNE et de l’ISAS au CEA qui nous fournissent des simulations détaillées des cascades gamma de désexcitation nucléaire et des simulations de dynamique moléculaire pour le recul des noyaux dans la matière.

A travers ce travail l’étudiant(e) aura une formation complète de physicien(ne) expérimentateur(trice) avec de fortes composantes de simulation et d’analyse de données, mais aussi un apprentissage des techniques de cryogénie dans le cadre de la mise en service des détecteurs de NUCLEUS et CRAB. Les contributions proposées mèneront à plusieurs publications durant la thèse avec une forte visibilité dans les communautés de la diffusion cohérente de neutrino et de la recherche de matière noire.

Au sein du CEA il (elle) bénéficiera du caractère exceptionnellement transverse de ce projet qui met déjà en interaction régulière les communautés de physique nucléaire, physique des particules et physique de la matière condensée.

COLLABORATIONS:

NUCLEUS: Allemagne (TU-Munich, MPP), Autriche (HEPHY, TU-Wien), Italie (INFN), France (CEA-Saclay).
CRAB: Allemagne (TU-Munich, MPP), Autriche (HEPHY, TU-Wien), Italie (INFN), France (CEA-Saclay, CNRS-IJCLab, CNRS-IP2I, CNRS-LPSC).

REFERENCES:

[1] NUCLEUS Collaboration, Exploring CE?NS with NUCLEUS at the Chooz nuclear power plant, The European Physical Journal C 79 (2019) 1018.
15, 48, 160, 174
[2] R. Strauss et al., Gram-scale cryogenic calorimeters for rare-event searches, Phys. Rev. D 96 (2017) 022009. 16, 18, 78, 174
[3] H. Abele et al., Particle background characterization and prediction for the NUCLEUS reactor CE?NS experiment, https://arxiv.org/abs/2509.03559
[4] L. Thulliez, D. Lhuillier et al. Calibration of nuclear recoils at the 100 eV scale using neutron capture, JINST 16 (2021) 07, P07032
(https://arxiv.org/abs/2011.13803)
[5]https://irfu.cea.fr/dphp/Phocea/Vie_des_labos/Ast/ast.php?id_ast=4970
[6] H. Abele et al., Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture, Phys. Rev. Lett. 130, 211802 (2023) (https://arxiv.org/abs/2211.03631)
[7] H.Abele et al., The CRAB facility at the TUWien TRIGA reactor: status and related physics program, (https://arxiv.org/abs/2505.15227)
[8] G. Soum-Sidikov et al., Study of collision and ?-cascade times following neutron-capture processes in cryogenic detectors Phys. Rev. D
108, 072009 (2023) (https://arxiv.org/abs/2305.10139)

Croissance et caractérisation de l’AlScN : un nouveau matériau prometteur pour les dispositifs piézoélectriques et ferroélectriques

Les semi-conducteurs III-nitrures — GaN, AlN et InN — ont révolutionné le marché de l’éclairage et pénètrent rapidement le secteur de l’électronique de puissance. Actuellement, de nouveaux composés nitrures sont explorés dans la recherche de nouvelles fonctionnalités. Dans ce contexte, le nitrure d’aluminium et de scandium (AlScN) s’est imposé comme un nouveau membre particulièrement prometteur de la famille des nitrures. L’incorporation de scandium dans l’AlN conduit à :

* Des constantes piézoélectriques accrues : ce qui rend l’AlScN très attractif pour la fabrication de générateurs piézoélectriques et de filtres SAW/BAW à haute fréquence.
* Une polarisation spontanée augmentée : cette polarisation renforcée peut être exploitée dans la conception de transistors à haute mobilité électronique (HEMTs) présentant une densité de charge très élevée dans le canal.
* La ferroélectricité : la découverte récente (2019) de propriétés ferroélectriques ouvre la voie au développement de nouvelles mémoires non volatiles.

Au cours des cinq dernières années, l’AlScN est devenu un sujet majeur de recherche, présentant de nombreuses questions ouvertes et de passionnantes perspectives à explorer.

Cette thèse de doctorat portera sur l’étude de la croissance et des propriétés de l’AlScN et du GaScN synthétisés par épitaxie par jets moléculaires (MBE). Le doctorant sera formé à l’utilisation d’un système MBE pour la synthèse des semi-conducteurs III-nitrures ainsi qu’à la caractérisation structurale des matériaux par microscopie à force atomique (AFM) et diffraction des rayons X (XRD). La variation des propriétés de polarisation du matériau sera étudiée par l’analyse de la photoluminescence de structures à puits quantiques. Enfin, le doctorant sera formé à l’utilisation de logiciels de simulation pour modéliser la structure électronique des échantillons, afin de faciliter l’interprétation des résultats optiques.

Électrodes positives composites dans les batteries à l’état solide : influence du procédé de fabrication sur les performances électrochimiques

Le développement de batteries tout solide (SSBs) à haute densité énergétique et à faible coût est essentiel pour l’adoption à grande échelle des technologies de stockage d’énergie de nouvelle génération. Parmi les différents candidats pour la cathode, le LiFePO4 (LFP) et le LiFe1??Mn?PO4 (LFMP) offrent des avantages en termes de sécurité et de coût, mais présentent des tensions de fonctionnement faibles et une cinétique limitée comparées aux oxydes lamellaires riches en nickel tels que le LiNi0.85Mn0.05Co0.1O2 (NMC85). Afin d’équilibrer densité énergétique, puissance et stabilité, ce projet de thèse vise à développer des cathodes composites combinant LFMP et NMC85 dans des proportions optimisées pour des configurations tout solide utilisant des électrolytes à base de soufre (Li6PS5Cl). Nous examinerons l’influence des méthodes de fabrication — notamment la préparation des électrodes faites à partir d’encres et l’optimisation du couple liant–solvant — sur les performances électrochimiques et structurales obtenues. Des caractérisations approfondies operando et in situ (XRD, Raman et RMN) seront menées afin d’élucider la diffusion du lithium, les mécanismes de transition de phase et le comportement rédox au sein des systèmes composites. La spectroscopie d’impédance électrochimique (EIS) et des méthodes de titration permettront de quantifier la cinétique du lithium à différents états de charge. En corrélant les conditions de fabrication, la microstructure et le comportement électrochimique, ce projet vise à identifier les compositions de cathodes et les stratégies de fabrication optimales pour des SSBs performantes et industrialisables. Au global, le projet vise à fournir une compréhension complète des relations structure–propriété dans les cathodes composites, ouvrant la voie à des batteries tout solide pratiques offrant une sécurité, une stabilité et une rentabilité accrues.

Développement de biocapteurs interférométriques photo-imprimés sur fibres optiques multicoeurs pour le diagnostic moléculaire

Les fibres optiques sont des dispositifs peu invasifs couramment utilisés en médecine pour l'imagerie tissulaire in vivo par endoscopie. Cependant, à l'heure actuelle, elles ne fournissent que des images et aucune information moléculaire sur les tissus observés. La thèse proposée s'inscrit dans un projet visant à conférer aux fibres optiques la capacité d'effectuer des reconnaissances moléculaires afin de développer des biocapteurs innovants capables d'effectuer une analyse moléculaire en temps réel, à distance, in situ et multiplexée. Un tel outil pourrait apporter des progrès importants dans le domaine médical, et plus particulièrement dans l'étude des pathologies cérébrales pour lesquelles la connaissance de l'environnement tumoral, difficilement accessible par des biopsies classiques, est primordiale.
L'approche proposée repose sur l'impression par polymérisation à 2-photons de structures interférométriques à l'extrémité de chacun des cœurs d'un assemblage multifibre. Le principe de détection repose sur les interférences se produisant dans ces structures et leur modification par l'adsorption de molécules biologiques. Chacune des fibres de l’assemblage agira comme un capteur individuel et la mesure de l'intensité de la lumière rétro-réfléchie à l'extrémité fonctionnalisée permettra de rendre compte des interactions biologiques se produisant sur cette surface. Grâce à la modélisation du phénomène d’interférence, nous avons déterminé des paramètres pour optimiser la forme et la sensibilité des structures interférométriques (PTC InSiBio 2024-2025). Ces résultats ont permis l'impression et la caractérisation de la sensibilité de structures interférométriques sur mono-fibres. Les objectifs de la thèse sont de poursuivre cette caractérisation optique sur de nouveaux échantillons et de développer des méthodes de fonctionnalisation photo-chimiques originales afin de greffer plusieurs sondes biologiques à la surface des assemblages de fibres. Cette multi-fonctionnalisation permettra de réaliser une détection multiplexée, essentielle pour envisager une application médicale future. Selon l'avancement de la thèse, les biocapteurs seront validés au travers de la détection de cibles biologiques dans des milieux de plus en plus complexes pouvant aller jusqu'à un modèle de tissu cérébral.

Effets de Friction couplés de la mer de Dirac et du champ électromagnétique du vide sur des atomes en mouvement

Les fluctuations quantiques induisent des forces macroscopiques conservatrices telles que l'effet Casimir. Elles pourraient également provoquer des forces dissipatives, appelées friction du vide (ou friction quantique). Jusqu'à présent, cet effet de friction a été calculé en considérant uniquement les fluctuations électromagnétiques, c'est-à-dire sans tenir compte de la mer de Dirac. Ce projet est consacré à l'extension de nos recherches dans cette direction : les électrons, en tant que principaux contributeurs de l'interaction matière-champ, interagissent également avec les paires virtuelles électron-positron dans le vide quantique. Quelle part de la friction quantique, à température nulle ou finie du vide, pourrait être due à ce type d'interaction ? Une première étape consistera à adapter le cadre semi-classique actuel pour inclure la polarisation du vide et la création de paires. Ce faisant, on rencontrera des cut-offs de fréquence haute finie, traditionnellement liées à la création de paires virtuelles ; on déterminera ainsi une composante de friction liée au cut-off des intégrales de Fourier. Sur cette voie de recherche, on veillera à maintenir la cohérence mathématique de l'ensemble du cadre. Un objectif à plus long terme reste un traitement relativiste quantique complet et cohérent de la friction quantique au niveau atomique.

Modélisation d'une diode magnonique basée sur la non-réciprocité des ondes de spin dans les nanofils et les nanotubes

Ce projet de doctorat porte sur le phénomène émergent de non-réciprocité des ondes de spin dans les fils magnétiques cylindriques, de leurs propriétés fondamentales jusqu'à leur exploitation pour la réalisation de dispositifs à base de diodes magnoniques. Des expériences préliminaires menées dans notre laboratoire SPINTEC sur des fils cylindriques, avec une aimantation axiale dans le cœur et azimutale à la surface du fil, ont révélé un effet asymétrique géant (courbes de dispersion asymétriques avec des vitesses et des périodes différentes pour les ondes se propageant vers la gauche et vers la droite), créant même une bande interdite pour une direction de mouvement donnée, liée à la circulation de la magnétisation (vers la droite ou vers la gauche). Cette situation particulière n'a pas encore été décrite théoriquement ni modélisée, ce qui constitue un terrain inexploré et prometteur pour ce projet de doctorat. Pour modéliser la propagation des ondes de spin et dériver les courbes de dispersion pour un matériau donné, nous prévoyons d'utiliser divers outils numériques : notre logiciel micromagnétique 3D par éléments finis feeLLGood et le logiciel 2D open source TetraX dédié aux calculs de modes propres et spectres associés. Ce travail sera mené en étroite collaboration avec des expérimentateurs, dans le but à la fois d'expliquer les résultats expérimentaux et d'orienter les futures expériences et les axes de recherche.

Approches chémobiologiques pour la toxicologie des terres rares chez l’Humain

L’utilisation technologique des lanthanides s’est intensifiée dans des domaines aussi divers que les énergies renouvelables, l’informatique et la médecine. Leur utilisation croissante pose la question de leur impact sur l’environnement et la santé humaine. Cependant, peu d’études existent sur leur toxicité éventuelle et les mécanismes moléculaires qui la sous-tendent. Nous proposons une approche pluridisciplinaire pour répondre à ces questions, et notamment : (i) identifier les protéines impliquées dans la réponse cellulaire à l’exposition aux lanthanides ; (ii) identifier les protéines interagissant avec ces ions métalliques, en utilisant des outils chémobiologiques développées au laboratoire. Nous déterminerons ainsi les partenaires d’interaction de ces métaux critiques, leur effet sur les organismes vivants et les caractéristiques clés qui leur permettent de lier le métal. Nos résultats permettront d’étendre nos connaissances sur la toxicologie de ces métaux, peu étudiée, et d’informer les politiques de protection environnementale et humaine. Sur le long terme, la compréhension des mécanismes moléculaires des interactions métal-vivant permettra l’émergence de stratégies bio-inspirées pour leur extraction, leur recyclage et leur (bio)remédiation.

Détection ultra-précoce de pathogènes bactériens dans le sang de patient

Ce projet vise à développer un instrument d'imagerie par résonance des plasmons de surface (SPRi) polyvalent et facile à utiliser pour la détection rapide et à large spectre de concentrations faibles de bactéries pathogènes dans des échantillons complexes, dont le sang en particulier. La SPRi est une technique, sans marquage, qui permet de sonder un échantillon (quelle que soit sa transparence optique), en temps réel. En raison de la grande sensibilité du phénomène de plasmon, la plage dynamique de variation d'indice mesurable est limitée par détection SPRi lorsque la lecture est réalisée à un angle fixe, comme c'est le cas dans les dispositifs déployés dans le commerce. Cela réduit l'utilisation de tels instruments optiques à l'étude de milieux dont l'indice reste relativement stable pendant l'expérience et dont les sondes moléculaires ont des poids moléculaires comparables aux cibles (suivi d'interactions bi-moléculaires).
Ainsi, cela limite considérablement la détection de bactéries en croissance dans des milieux complexes. Notre laboratoire a développé des solutions originales pour la détection de très faibles taux de contaminations dans des matrices alimentaires (création d'une start-up en 2012), mais la SPRi se révèle inadaptée pour la détection de bactéries dans le sang, en partie en raison de la très forte variabilité intrinsèque de cette matrice.
Ces limites seront supprimées en intégrant cinq briques complémentaires :
1. La conception d'un instrument optimisé pour l'enregistrement en temps réel d'images SPR sur une plage définie d'angles d'éclairage;
2. Le développement d'une analyse et de traitement des données SPR dédiée pour extraire en temps réel l'information la plus pertinente pour chaque sonde à partir des images ;
3. La fonctionnalisation des biopuces par une combinaison de sondes appropriées (séries de peptides tels que les peptides antimicrobiens (AMPs), anticorps et même bactériophages) pour optimiser le nombre d'identifications possibles avec un ensemble réduit de sondes ;
4. L'apprentissage des "signatures SPRi 4D" spécifiques de souches modèles dans des matrices sanguines ;
5. La validation des performances du nouvel instrument « 4D-SPRi » comme outil de détection et de caractérisation des bactéries issues de souches hospitalières par rapport à des techniques de référence.

Top