Dévelopement d'algorithmes de trajectographie basés sur l'apprentissage machine pour le futur Upstream Tracker de LHCb au LHC
Cette proposition vise à développer et améliorer les futures performances de trajectographie de l'expérience LHCb au Grand collisionneur de hadrons (LHC) via l’étude de divers algorithmes basés sur l'apprentissage machine automatique. Parmi les systèmes de trajectographie de LHCb, le sous-détecteur Upstream Tracker (UT) joue un rôle crucial dans la réduction du taux de fausses traces reconstruites dès les premières étapes du processus de reconstruction. Dans l'optique de pouvoir mener à bien les futures études de désintégrations rares de particules, la violation CP dans le Modèle standard, et l'étude du plasma de Quark et Gluon dans les collisions Pb-Pb, une trajectographie précise dans LHCb est obligatoire.
Avec les mises à jour du détecteur prévues d'ici 2035 et l'augmentation anticipée des taux de données, les méthodes de trajectographie traditionnelles risquent de ne pas répondre aux exigences computationnelles, notamment dans les collisions noyau-noyau où des milliers de particules sont produites. Durant la thèse, nous explorerons une gamme de techniques basées sur l'apprentissage machine automatique, comme celles déjà appliquées avec succès dans le Vertex Locator (VELO) de LHCb, pour améliorer la performance de trajectographie de l'UT. En appliquant des méthodes variées, nous visons à améliorer la reconstruction des trajectoires aux premiers stades de la reconstruction, accroître l'efficacité de trajectographie et réduire le taux de fausses traces. Parmi ces techniques, les réseaux de neurones graphiques (Graph Neural Networks, GNN) représentent une option particulièrement prometteuse grâce à l'exploitation des corrélations spatiales et temporelles des hits du détecteur.
Cette exploration de nouvelles méthodes impliquera des développements adaptés au matériel hardware, qu’il s’agisse de GPU, CPU ou FPGA, tous potentiellement présent dans l'architecture de reconstruction du futur LHCb. Nous comparerons les différents algorithmes par rapport aux méthodes de trajectographie actuelles afin de quantifier les améliorations en termes de performance, de scalabilité et d'efficacité computationnelle. De plus, nous prévoyons d’intégrer les algorithmes les plus performants au sein du logiciel de LHCb de de garantir leur compatibilité avec les pipelines de données existants.
Dispositifs supraconducteurs en Silicium
The project focuses on the study of superconducting devices with silicon as a semiconductor. Those include standard silicon transistors with superconducting source and drain contacts and superconducting resonators. The common properties is the superconducting material which is elaborated with the constrain of being compatible with the silicon CMOS technology.
In the actual situation of the project, devices with CoSi2, PtSi and Si:B superconducting contacts have been fabricated using the 300 mm clean room facility at the LETI and in collaboration with our partners at Uppsala university and C2N Paris Saclay. The main issue is now to characterize the electronic transport properties at very low temperature.
Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel
L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.
Qubits volants dans le graphène
Les systèmes à l'état solide, actuellement envisagés pour le calcul quantique, sont construits à partir de systèmes localisés à deux niveaux, dont des exemples emblématiques sont les qubits supraconducteurs ou les points quantiques semi-conducteurs. Étant donné qu'ils sont localisés, ils nécessitent une quantité fixe de matériel par qubit.
Les qubits propagateurs ou "volants" présentent des avantages distincts par rapport aux qubits localisés : l'empreinte matérielle dépend uniquement des portes et des qubits eux-mêmes (photons), qui peuvent être créés à la demande, rendant ces systèmes facilement évolutifs. Un qubit qui combinerait les avantages des systèmes localisés et des qubits volants offrirait un changement de paradigme dans la technologie quantique. À long terme, la disponibilité de ces objets ouvrirait la possibilité de construire un ordinateur quantique universel combinant une petite empreinte matérielle fixe et un nombre arbitrairement grand de qubits avec des interactions à longue portée. Une approche prometteuse dans ce sens consiste à utiliser des électrons plutôt que des photons pour réaliser de tels qubits volants. L'avantage des excitations électroniques réside dans l'interaction de Coulomb, qui permet la mise en œuvre d'une porte à deux qubits.
L'objectif de ce doctorat sera le développement de la première plateforme nanoélectronique quantique pour la création, la manipulation et la détection d'électrons volants sur des échelles de temps allant jusqu'à la picoseconde, afin de les exploiter pour des technologies quantiques.
Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures
Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonée, les revêtements de surface pour l’amélioration de la tenue mécanique des aciers ou la protection contre la corrosion ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. Une compréhension fine de ces aspects requiert des matériaux aussi parfaits que possibles. La production de films minces monocristallins correspondants, est cependant un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroïques artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que de leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques. Ces dernières seront modélisées grâce à des calculs de structure électronique pour parvenir à une description complète de cette nouvelle classe de matériaux.
Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés. Le dichroïsme magnétique des rayons X est particulièrement adapté à cette étude et le projet donnera lieu à une collaboration étroite et/ou un co-encadrement avec la ligne DEIMOS du synchrotron SOLEIL.
Analyse multi-messager des explosions de supernovae
Les supernovae a` effondrement de cœur jouent un rôle pivot dans l’évolution stellaire des étoiles massives, la naissance des étoiles à neutrons et des trous noir, et l’enrichissement chimique des galaxies. Comment explosent-elles ? Le mécanisme d’explosion peut être éclairé par l’analyse des signaux multi-messager: la production de neutrinos et d’ondes gravitationnelles est modulée par les instabilités hydrodynamiques pendant la seconde qui suit la formation d’une proto-étoile à neutrons.
Cette the`se propose d’utiliser la complémentarité des signaux multi-messager d’une supernova a` effondrement de cœur, à la lumière des simulations numériques de la dynamique de l’effondrement et de l'analyse perturbative, pour en extraire les informations physiques sur le mécanisme d’explosion.
Le projet abordera plus spécifiquement les propriétés multi-messager de l'instabilité du choc stationnaire ("SASI") et de l'instabilite´ de corotation ("low T/W") pour un progéniteur en rotation. Pour chacune de ces instabilités, les informations de composition des neutrinos et de polarisation des ondes gravitationnelles seront exploitées, ainsi que la corrélation entre ces signaux.
Création d’un jumeau numérique du procédé de Spray Pyrolyse en Flamme
Notre capacité à fabriquer des nanoparticules (NP) d'oxyde métallique avec une composition, une morphologie et des propriétés bien définies est une clé pour accéder à de nouveaux matériaux qui peuvent avoir un impact technologique révolutionnaire, par exemple pour la photocatalyse ou le stockage d'énergie. Parmi les différentes technologies de production, les systèmes de Spray Pyrolyse en Flamme (SPF) constituent une option prometteuse pour la synthèse industrielle de NP. Cette voie de synthèse repose sur l'évaporation rapide d'une solution - solvant plus précurseurs - atomisée sous forme de gouttelettes dans une flamme pilote pour obtenir des nanoparticules. Malheureusement, la maitrise du procède de synthèse SPF est aujourd’hui limitée à cause d’une trop grande variabilité de conditions opératoires à explorer pour la multitude de nanoparticules cibles. Dans ce contexte, l'objectif de ce sujet de thèse est de développer le cadre expérimental et numérique nécessaire au déploiement futur de l’intelligence artificielle pour la maitrise des systèmes SPF. Pour ce faire, les différents phénomènes prenant place dans les flammes de synthèse au cours de la formation des nanoparticules seront simulés, notamment au moyen de calculs de dynamique des fluides. Au final, la création d’un jumeau numérique du procédé est attendue, qui permettra de disposer d’une approche prédictive pour le choix des paramètres de synthèse à utiliser pour aboutir au matériau souhaité, ce qui diminuera drastiquement le nombre d’expériences à réaliser et le temps de mise au point de nouvelles nuances de matériaux.
Exploration de la dynamique de dépôt d’énergie aux temps courts d’électrons accélérés par laser dans le cadre de l’effet Flash en radiothérapie
L’objectif du projet de thèse est d’analyser les processus physico-chimiques consécutifs aux débits de dose extrêmes que l’on peut obtenir maintenant dans l’eau avec les impulsions ultra-brèves (fs) d’électrons relativistes accélérés par laser. En effet, des premières mesures montrent que ces processus ne sont probablement pas équivalents à ceux obtenus avec des impulsions plus longues (µs) dans l’effet FLASH utilisé en radiothérapie. Pour y arriver, nous proposons d’analyser la dynamique de formation/recombinaison de l’électron hydraté, espèce emblématique de la radiolyse de l’eau pour qualifier et quantifier l’effet de débit de dose sur des temps de plus en plus courts. Ceci pourra se faire en trois étapes en accompagnement de la progression technologique nécessaire et maintenant accessible, pour avoir une dose par impulsion suffisante pour détecter directement l’électron hydraté. D’abord, avec l’installation existante UHI100 en utilisant la capture de l’électron hydraté en produisant une espèce stable ; puis en produisant une espèce moins stable mais détectable en temps réel et en augmentant le taux de répétition de l’accélérateur laser-plasma. Finalement, en testant un nouveau concept appelé « cible hybride », basé sur l’utilisation d’un miroir plasma comme injecteur d’électrons couplé à un accélérateur laser-plasma. Délivrant des doses plus importantes que les accélérateurs laser-plasma, avec un spectre énergétique resserré, on pourra développer une détection pompe-sonde permettant d’accéder aux temps les plus courts, et à la formation dans les grappes d’ionisation, de l’électron hydraté et en mesurant son rendement initial.
Contrôle de la conversion de l'énergie thermoélectrique par la chimie de coordination des ions de métaux de transition dans les liquides ioniques
La thermoélectricité, la capacité d'un matériau à convertir la chaleur en énergie électrique, est connue dans les liquides depuis plusieurs décennies. Contrairement aux solides, ce processus de conversion dans les liquides prend plusieurs formes, notamment les réactions thermo-galvaniques entre les ions redox et les électrodes, la thermodiffusion d'espèces chargées et la formation d'une double couche électrique aux électrodes qui varie en fonction de la température. Les valeurs observées du coefficient Seebeck (Se = - DV/DT, le rapport entre la tension induite (DV) et la différence de température appliquée (DT)) sont généralement supérieures à 1 mV/K, un ordre de grandeur plus élevé que celles trouvées dans les semi-conducteurs solides. Le premier exemple fonctionnel d'un générateur thermoélectrique (TE) à base de liquide a été rapporté en 1986 en utilisant des sels redox de ferro/ferricyanure dans l'eau. Cependant, dû à la faible conductivité électrique des liquides l’efficacité de conversion était très faible, ce qui empêchait leur utilisation dans des applications de récupération de la chaleur perdue à basse température.
Les perspectives des générateurs TE-liquides se sont améliorés au cours de la dernière décennie avec le développement des liquides ioniques (LI). Les LI sont des sels fondus qui sont liquides en dessous de 100 °C. Par rapport aux liquides classiques, ils présentent de nombreuses caractéristiques favorables telles que des points d'ébullition élevés, une faible pression de vapeur, une conductivité ionique élevée, une faible conductivité thermique et aussi des valeurs de Se plus élevées. Plus récemment, une étude expérimentale menée par l’IJCLab et le SPEC a révélé que la complexation de couples redox de métaux de transition dans des liquides ioniques peut conduire à une hausse de leur coefficient Se significative de -1,6 à -5,7 mV/K, l'une des valeurs les plus élevées rapportées dans les cellules thermoélectriques à base de LI. Une compréhension électrochimique et physicochimique, et un contrôle précis de la spéciation des ions métalliques présentent sont nécessaire pour la conception rationnelle de la future technologie thermo-électrochimique.
Basé sur ces récentes découvertes, nous proposons une étude systématique de la chimie de coordination des ions redox de métaux de transition dans les liquides ioniques et les mélanges combinant des technique électrochimique et thermoélectrique. L’objectif à long terme associé à cette étude est de démontrer le potentiel d'application des cellules thermo-électrochimiques liquides basées sur des matériaux abordables, abondants et sans danger pour l'environnement pour la récupération d'énergie thermique comme outil d'efficacité énergétique.
RMN du Xénon hyperpolarisé pour sonder la fonctionnalité de barrières biologiques
Le pompage optique du xénon, permettant d’obtenir rapidement un signal RMN intense, est une spécialité de l’équipe LSDRM. Le xénon, soluble dans les milieux biologiques, présente une grande gamme de déplacements chimiques, ce nous utilisons ici pour étudier les propriétés de barrières cellulaires. De nombreuses pathologies découlent d'une altération de celles-ci.
Dans ce sujet de thèse nous souhaitons développer une méthodologie spécifique au xénon hyperpolarisé pour étudier la fonctionnalité (intégrité, perméabilité, sélectivité) de barrières biologiques, en spectroscopie et en imagerie in vitro et in vivo. La thèse se déroulera en deux parties : in vitro il s’agira de développer un dispositif et les protocoles RMN permettant d’étudier des assemblages cellulaires modèles; in vivo des études sur rongeurs permettront d’évaluer l’aptitude du xénon à atteindre des organes plus ou moins proches des poumons en gardant sa polarisation, et de mesurer des cinétiques de passage. Ce sujet permettra des avancées instrumentales et méthodologiques majeures, ainsi qu’un approfondissement des connaissances sur les processus de transports sélectifs au niveau de différentes barrières biologiques.