Accumulateurs aux lithium tout solide à base d’électrolyte pyrochlore
Face à l'augmentation de la demande énergétique, il est urgent de concevoir des systèmes de stockage plus performants, qu’ils soient stationnaires ou embarqués. Parmi ceux-ci, les batteries lithium-ion se démarquent comme les plus avancées, capables d’être fabriquées à partir d’électrolytes liquides ou solides. Les batteries tout-solide ont un bel avenir devant elles grâce à leurs électrolytes non inflammables et à leur capacité d’utiliser du lithium métallique pour augmenter la densité d’énergie. Bien que la recherche sur ces batteries donne lieu à une forte compétition internationale, leur commercialisation n’est pas encore une réalité. En effet, deux obstacles importants entravent leur développement : la faible conductivité ionique intrinsèque des solides et la difficulté d’obtenir de bonnes interfaces solides/solides au sein des électrodes composites et du système complet.
Cette thèse vise à développer des batteries tout-solide basée sur une nouvelle classe de matériaux superioniques de type pyrochlore oxyfluorure, qui sont stables à l’air et ont une conductivité ionique supérieure à celle de tous les électrolytes solides oxydes existants. Les propriétés électrochimiques des batteries tout solide seront soigneusement examinées en combinant des techniques in situ et operando (DRX, Raman, analyse par faisceau d'ions/synchrotron, RMN du solide, Tomographie à rayons X…).
Mots clés :
Électrolyte solide, Batterie tout solide, Résonance magnétique nucléaire, Électrochimie, pyrochlore Oxyfluorure, in situ/operando, Spectroscopie, Synchrotron
RECHERCHE DE LA DÉSINTÉGRATION NUCLÉAIRE EN DEUX PHOTONS
La désintégration nucléaire à deux photons, ou double-gamma, est un mode de désintégration rare dans les noyaux atomiques, par lequel un noyau dans un état excité émet deux rayons gamma simultanément. Les noyaux pairs avec un premier état excité 0+ sont des cas favorables à la recherche d'une branche de désintégration double-gamma, puisque l'émission d'un seul rayon gamma est strictement interdite pour les transitions 0+ to 0+ en raison de la conservation du moment angulaire. La désintégration double-gamma reste encore une branche de désintégration très petite (<1E-4) en compétition avec les modes de désintégration dominants (de premier ordre) des électrons de conversion interne atomique (ICE) ou de la création de paires internes positron-électron (e+-e-) (IPC).
Le projet de thèse comporte deux parties expérimentales distinctes: Premièrement, nous stockons des ions nus (entièrement épluchés) dans leur état excité 0+ dans l'anneau de stockage d'ions lourds (ESR) au GSI pour rechercher la désintégration double-gamma dans plusieurs nucléides. Pour les atomes neutres, l'état excité 0+ est un état isomérique à durée de vie plutôt courte, de l'ordre de quelques dizaines à quelques centaines de nanosecondes. Cependant, aux énergies relativistes disponibles au GSI, tous les ions sont entièrement épluchés de leurs électrons atomiques et la désintégration par émission ICE n'est donc pas possible. Si l'état d'intérêt est situé en dessous du seuil de création de paires, le processus IPC n'est pas non plus possible. Par conséquent, les noyaux nus sont piégés dans un état isomérique à longue durée de vie, qui ne peut se désintégrer que par émission double-gamma vers l'état fondamental. La désintégration des isomères est identifiée par la spectroscopie de masse Schottky résolue dans le temps. Cette méthode permet de distinguer l'isomère et l'état fondamental par leur temps de révolution (très légèrement) différent dans l'ESR, et d'observer la disparition du pic de l'isomère dans le spectre de masse avec un temps de décroissance caractéristique. Des expériences établissant la désintégration double-gamma dans plusieurs nucléides (72Ge, 98Mo, 98Zr) ont déjà été réalisées avec succès et une nouvelle expérience a été acceptée par le comité de programme du GSI et sa réalisation est prévue pour 2025.
La deuxième partie concerne l'observation directe des photons émis à l'aide de la spectroscopie des rayons gamma. Alors que les expériences sur les anneaux de stockage permettent de mesurer la durée de vie partielle de la double désintégration gamma, des informations supplémentaires sur les propriétés nucléaires ne peuvent être obtenues qu'en mesurant les photons eux-mêmes. Une expérience test a été réalisée pour étudier sa faisabilité et les plans d'une étude plus détaillée devraient être élaborés dans le cadre du projet de doctorat.
Vers un detecteur pixel à haute resolution spatiale pour l’identification de particules: contribution de nouveaux détecteurs à la physique
Les expériences de physique des particules sur les futurs collisionneurs linéaires à e-e+ nécessitent des progrès dans la résolution spatiale des détecteurs de vertex (jusqu’au micron), ceci afin de déterminer précisément les vertex primaires et secondaires pour des particules de grande impulsion transverse. Ce type de détecteur est placé près du point d’interaction. Ceci permettra de faire des mesures de précision en particulier pour des particules chargées de faible durée de vie. Nous devons par conséquent développer des matrices comprenant des pixels de dimension inférieure au micron-carré. Les technologies adéquates (DOTPIX, Pixel à Puit/Point quantique) devraient permettre une avance significative en reconstruction de trace et de vertex. Bien que le principe de ces nouveaux dispositifs ait été étudié à l’IRFU (voir référence), ce travail de doctorat devrait se focaliser sur l’étude de dispositifs réels qui devraient alors être fabriqués garce aux nanotechnologies en collaboration avec d’autres Instituts. Cela requiert l’utilisation de codes de simulation et la fabrication de structures de test. Les applications en dehors de la physique se trouvent pour l’essentiel dans l’imagerie X et éventuellement les cameras holographiques dans le visible.
Synthèse et études des propriétés optiques de nanoparticules de graphène
Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).
Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier: des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Nous nous intéresserons particulièrement à des familles de nanoparticules allongées dans le but d'étudier comment la taille peut permettre d'observer et contrôler des processus multiexcitoniques dans ces matériaux. Ce projet sera développé en collaboration avec des physiciens, le/la candidat(e) devra donc avoir un gout prononcé pour le travail pluridisciplinaire.
Condensats et Chromatine : Comment la Séparation de Phase Façonne les Réponses des Plantes à la Température
Les plantes doivent adapter leur développement aux conditions environnementales, notamment à l'augmentation des températures due au changement climatique. Le stress thermique impacte significativement la physiologie des plantes, et pour atténuer ces effets, elles ont développé des réponses au choc thermique (HSR), avec le facteur de choc thermique A1a (HSFA1a) jouant le rôle de régulateur principal chez Arabidopsis thaliana. En l'absence de stress, HSFA1a reste cytosolique et inactif, lié aux protéines de choc thermique (HSPs). Le stress thermique provoque la dissociation des HSPs, permettant la translocation nucléaire, la trimérisation, la liaison à la chromatine et l'activation des gènes de réponse au stress. Des études récentes révèlent qu'HSFA1a pourrait agir comme un facteur de transcription pionnier pour accéder à des régions chromatiniennes fermées et initier la HSR. De plus, des résultats préliminaires suggèrent qu'HSFA1a subit une séparation de phase liquide-liquide (LLPS) pour former des condensats nucléaires régulant l'expression des gènes. Ce projet vise à 1) explorer l'effet de la température sur la structure et l'oligomérisation de HSFA1a, 2) étudier la LLPS de HSFA1a en présence et en absence d'ADN, 3) caractériser l'activité pionnière de HSFA1a, et 4) déterminer l'importance physiologique de la LLPS dans la HSR.
Caractérisation du mécanisme moléculaire de détection des terres rares chez Pseudomonas putida et développement de biosenseurs associés.
Les terres rares (TR) sont des métaux largement utilisés dans les hautes technologies et la demande en TR devrait doubler d’ici 30 ans. L’extraction sélective et le recyclage des TR ont un triple enjeu, économique, technologique et écologique. Actuellement, moins de 1% des TR sont recyclées. De plus, les méthodes d’extraction sont fastidieuses et polluantes. Elles nécessitent plusieurs étapes avec acides ou solvants. La découverte en 2011 d’enzymes utilisant naturellement les TR légères a ouvert de nouvelles perspectives. Le développement de méthodes biosourcées pourrait être un élément clé pour débloquer les verrous de sélectivité et d’extraction actuels. Cette thèse s’inscrit dans la thématique biotechnologies de demain. Le but de cette thèse, est d’acquérir des données fondamentales sur le mécanisme moléculaire d’un système biologique de perception sélective des TR afin d’en tirer profit pour le développement d’un crible basé sur des biosenseurs répondant spécifiquement à certaines d’entre elles. Des techniques de biologie cellulaire, biochimie et d’analyse in silico avec des outils d’intelligence artificielle seront utilisées pour accomplir ce projet. Les résultats obtenus permettront d’identifier : 1) le mécanisme moléculaire de détection des TR et les facteurs influençant sa sélectivité, 2) les sites de liaison du régulateur et les gènes impliqués dans cette réponse, et 3) le développement à partir de 1) and 2) de biosenseurs robustes et sélectifs.
Miroirs plasmas pour des sources de lumière à des intensités extrêmes et pour des accélérateurs compactes d'électrons
Objectifs de la recherche :
Étendre les capacités du code WarpX Partice-In-Cell pour réduire le coût de convergence en utilisant le raffinement du maillage.
Concevoir un injecteur de haute qualité à haute charge pour les accélérateurs laser-plasma.
Déterminer la faisabilité du schéma proposé sur un système laser de classe 100-TW.
Le chercheur bénéficiera d'une grande variété de formations disponibles au CEA sur le calcul intensif et la programmation informatique, ainsi que de formations chez nos partenaires industriels (ARM, Eviden) et à l'Université Paris Saclay.
Les amas de galaxies dans le champ profond FornaX XMM-Euclid
Le projet XMM Heritage sur le champ DEEP Euclid Fornax a pour but de caractériser les amas de galaxies distants en comparant les détections en X et en optique/IR. Les deux méthodes font appel à des propriétés des amas très différentes ; ultimement, leur combinaison permettra de fixer les paramètres libres de la fonction de sélection des amas Euclid sur tout le survey WIDE, et constituera donc un ingrédient fondamental pour l’analyse cosmologique Euclid.
La gamme de redshift visée ([1-2]) n'a jamais pu être explorée de manière systématique alors qu'elle constitue un domaine critique pour l'utilisation des amas en cosmologie.
Avec FornaX, pour la première fois, on aura accès à un grand volume à ces redshifts, ce qui permettra de quantifier statistiquement l'évolution des amas : rôle des AGN dans les propriétés du gaz intra-amas ? Existe-t-il des amas massifs déficients en gaz ? Quelles sont les biais respectifs de détection en X et en optique ?
Le travail de thèse consistera en (1) la construction et la validation du catalogue d’amas X ; (2) la corrélation avec les catalogues en optique/IR obtenus par Euclid (3) l’étude de l’évolution combinée X-optique des amas.
Tous les algorithmes de détection et de caractérisation des amas dans les images XMM existent, mais on poussera la détection plus profondément en utilisant des techniques d’intelligence artificielle (combinant l’information spatiale et spectrale sur les sources). Le problème complexe de la corrélation spatiale entre les catalogues d’amas XMM et Euclid fera aussi intervenir l’IA.
Site du projet : https://fornax.cosmostat.org/
Couplages réducteurs électrocatalysés d’olefines et de carbonyles pour la synthèse de molécules durables.
Le LCMCE vise à développer une méthode durable pour la fonctionnalisation réductrice de dérivés carbonylés avec des oléfines via l'électrochimie. Les processus redox traditionnels en synthèse organique reposent souvent sur des méthodes thermochimiques à partir d'oxydants ou de réducteurs stœchiométriques et produisent des déchets. L’électrification de ces processus permettra d’en améliorer l'économie d'atomes et d'énergie. La nouveauté de ce projet repose sur la génération des espèces catalytiques « métal–hydrure » par la réduction cathodique de complexes organométalliques en présence de protons et non par l’ajout de réducteurs chimiques comme cela est décrit dans la littérature. L’insertion d’une fonction alcène dans la liaison métal-hydrure conduira à la formation d’intermédiaire réactifs pour le couplage avec des carbonyles électrophiles. Les substrats de ce projet ont été sélectionnés de manière à apporter des preuves de concept rapides dans un premier temps puis de permettre l’étude de réactivités plus ambitieuses pour aller jusqu’à des réactions de carboxylation pour lequel CO2 est l’électrophile. Une attention particulière sera portée à la conception des catalyseurs homogènes, et à leur synergie avec les conditions électrochimiques afin de conduire à des espèces actives et sélectives. Le projet s’intéressera également à la compréhension des mécanismes mis en jeu lors de ces réactions.
Nanostructures à base de porphyrines
Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.
Dans le cadre de ce projet, les porphyrines synthétisées seront étudiées en collaboration avec plusieurs groupes de physiciens dans le but de réaliser sur surface par voie "bottom-up" des réseaux covalents (1D ou 2D) et d’étudier leur propriétés optiques et électroniques.