Cartographie des potentiels de surface des oxydes métalliques activées catalytiquement utilisés comme des photoanodes
Lors de la photoélectrolyse d’eau, le transfert de charges à l'interface photoanode/électrolyte est déterminé par l'alignement des bandes d'énergie, à la fois côté électrode et côté électrolyte. Le potentiel de surface de l’électrode joue un rôle majeur sur la courbure finale des bandes et par conséquent sur la séparation des charges à l’interface. Aussi appelé potentiel de surface électrochimique, il varie en fonction de l'environnement (vide, air, eau, etc.). L'objectif de cette thèse est d'aborder la réaction d’oxydation de l’eau (OER) à l'interface photoanode/électrolyte en termes de bandes d'énergie et en particulier du point de vue du potentiel de surface électrochimique. Ainsi, au cours de cette thèse, le doctorant caractérisera les potentiels de surface d'une série de photoanodes (oxydes métallique semiconducteurs activées catalytiquement) en contact avec différents environnements (vide, air à humidité variable, eau) et les corrélera à l'activité photoélectrochimique (PEC). L'activité du doctorant s'articulera autour de quatre axes : i) synthèse de photoanodes par voie chimique ; ii) caractérisation de l'activité photoélectrochimique ; iii) caractérisation par microscopie à force atomique (AFM) corrélée à la microscopie à force de Kelvin (KPFM) ; iv) spectromicroscopies de rayons X synchrotron (STXM, XPEEM) et photoémission à pression ambiante (NAP-XPS). L'étudiant sera accueilli au laboratoire SPEC du CEA-Saclay pendant toute la durée de sa thèse. Ses travaux s'inscrivent dans le cadre d'une collaboration de longue date entre SPEC et SOLEIL.
Analyse multi-modale par résonance magnétique nucléaire in situ des phénomènes électrochimiques dans des prototypes de batteries commerciales
Le développement des technologies de stockage d'énergie électrochimique est impossible sans une compréhension à l'échelle moléculaire des processus tels qu'ils se produisent dans les dispositifs commerciaux pratiques. Certains aspects de la conception des batteries, tels que la composition chimique et l'épaisseur des électrodes, ainsi que la configuration des collecteurs et des languettes de courant, influencent les distributions de densité de courant électronique et ionique et déterminent les limites cinétiques du transport ionique à l'état solide. Ces effets, à leur tour, modulent les performances et la longévité globales des batteries. Pour ces raisons, les résultats des tests de piles boutons conventionnelles ne convergent souvent pas vers des cellules commerciales hautes performances. Les préoccupations de sécurité liées à la forte densité énergétique et aux composants inflammables des batteries constituent un autre sujet crucial pour la conversion des énergies fossiles aux énergies vertes.
La spectroscopie et l'imagerie par résonance magnétique nucléaire (RMN, IRM) sont exceptionnellement sensibles à l'environnement structurel et à la dynamique de la plupart des éléments présents dans les matériaux actifs des batteries.
Récemment, des méthodes de RMN et d'IRM à balayage de surface prêtes à l'emploi ont été introduites. Dans le cadre de la recherche électrochimique fondamentale, la fusion de deux concepts innovants et complémentaires au sein d'un dispositif multimodal (RMN-IRM) permettrait de proposer diverses solutions analytiques et des mesures fiables de la performance des batteries pour le monde universitaire et le secteur de l'énergie.
Ce projet vise à développer un cadre analytique avancé pour l'analyse in situ de phénomènes fondamentaux tels que le transport d'ions à l'état solide, l'intercalation et les transitions de phase associées, la dynamique du placage métallique, la dégradation des électrolytes et les défauts mécaniques dans les batteries Li-ion et Na-ion commerciales, dans diverses conditions de fonctionnement. Une gamme de capteurs multimodaux (RMN-IRM) sera développée et utilisée pour l'analyse approfondie des processus électrochimiques fondamentaux dans les cellules et les petits packs de batteries commerciaux.
Combinaison des radiations ionisantes et de molécules radio-sensibilisantes dans des modèles de cancer du sein
Le programme proposé vise à évaluer l'efficacité de molécules améliorant les effets de la radiothérapie, dans des modèles de cancer du sein. Des inhibiteurs de la voie du Base Excision Repair feront l'objet d'un test d'efficacité de radiopotentialisation dans les modèles in vitro et in vivo complémentaires.
Les inhibiteurs pressentis font déjà l’objet de recherches in vitro, au sein du laboratoire et chez des collaborateurs. Nous avons montré que l’inhibition des mécanismes étudiés permet une diminution de la réparation des cassures de l’ADN suivant un stress génotoxique. Durant ce projet, nous évaluerons les effets des inhibiteurs sur les réparations des dommages à l’ADN induits par les irradiations de différents types (conventionnelle, ultra haut débit de dose, voire débit de dose extrême), ainsi que les mécanismes associés.
Une variabilité de réponse aux combinaisons thérapeutiques est très fréquemment observée lors du passage des modèles in vitro aux modèles in vivo. Ainsi nous évaluerons les inhibiteurs d’une part sur des modèles de lignées cellulaires bien caractérisés au laboratoire, et correspondant à différents sous-types de cancer du sein. D’autre part, les études seront complétées par une validation des effets relevés in vitro sur un modèle murin de cancer du sein. Ce modèle de xénogreffes, développé dans des animaux immunocompétents, permet un suivi clinique, histologique, et immunitaire des animaux et de leurs tumeurs afin de confirmer l'intérêt des molécules pour une application thérapeutique en appui à la radiothérapie.
Ce programme bénéficiera des collaborations du laboratoire avec des physiciens et des chimistes, et des installations expérimentales et plateformes de l'IRCM (irradiation, expérimentation animale, microscopie, cytométrie, etc...)
Etude des mécanismes d'action permettant l'induction d'une protection à long terme par la vaccination contre les maladies infectieuses chez l'homme
Le projet a pour objectif d'étudier les mécanismes moléculaires et cellulaires qui permettent l'induction d'une protection à long terme par les vaccins. Dans les modèles précliniques, il s'agira d'étudier la réponse précoce (heures et jours) de l'hôte après injection de vaccin et d'identifier les paramètres qui corrèlent avec la persistance à long terme (supérieure à 12 mois)des anticorps neutralisants et des cellules T et B mémoires spécifiques des antigènes vaccinaux. Un attention particulière sera portée au rôle de la persistance des antigènes vaccinaux dans l'organisme. L'approche impliquera la mise en œuvre de technologies omiques multiples à partir de différents compartiments cellules d'animaux vaccinés par le vaccin contre la fièvre jaune (Stamaril) et d'en déduire les marqueurs clés pouvant informer le développement de vaccins de nouvelle génération contre les poxvirus.
Recherche d’axions dans l’expérience SuperDAWA avec aimants supraconducteurs et radiométrie hyperfréquence
Les axions sont des particules hypothétiques qui pourraient à la fois expliquer un problème fondamental de la physique des interactions fortes (la conservation de la symétrie CP en QCD) et constituer une part importante de la matière noire. Leur détection directe représente donc un enjeu majeur en physique fondamentale et en cosmologie.
L’expérience SuperDAWA, en cours de construction au CEA Saclay, repose sur l’utilisation d’aimants supraconducteurs et d’un radiomètre hyperfréquence placé dans un cryostat cryogénique. Ce dispositif permettra de convertir des axions potentiels en ondes radio mesurables, dont la fréquence est directement liée à leur masse.
Le travail de thèse proposé se partagera entre modélisation numérique et participation à l’expérience. L’étudiant·e développera un modèle complet intégrant les champs magnétiques, la propagation du signal radio et la réponse de l’électronique, avec une validation progressive par des mesures réelles. Une fois l’expérience opérationnelle, le·la doctorant·e participera aux campagnes de prises de données et à leur analyse.
Ce projet offrira l’opportunité unique de contribuer à une expérience de pointe en physique expérimentale, avec des retombées directes sur la recherche mondiale de matière noire.
Mesures de précision des oscillations de neutrinos et recherche de la violation de CP avec les expériences T2K et Hyper-Kamiokande
L’étude des oscillations de neutrinos est entrée dans une ère de précision, portée par des expériences à longue ligne de base comme T2K, qui comparent les signaux de neutrinos dans des détecteurs proches et lointains pour sonder des paramètres clés, dont une possible violation de la symétrie charge-parité (CPV). Détecter la CPV chez les neutrinos pourrait aider à expliquer l’asymétrie matière–antimatière de l’Univers. Les résultats de T2K publiés en 2020 ont fourni de premiers indices de CPV, mais restent limités par la statistique. Pour améliorer la sensibilité, T2K a connu d’importantes mises à niveau : remplacement de la partie la plus en amont de son détecteur proche par une nouvelle cible, augmentation de la puissance de l’accélérateur (jusqu’à 800 kW en 2025, avec un objectif de 1,3 MW d’ici 2030). La prochaine génération, l’expérience Hyper-Kamiokande (Hyper-K), qui débutera en 2028, réutilisera le faisceau et le détecteur proche de T2K, mais avec un nouveau détecteur lointain 8,4 fois plus grand que Super-Kamiokande, augmentant considérablement la statistique. Le groupe IRFU a joué un rôle clé dans la mise à niveau du détecteur proche et se concentre désormais sur l’analyse des données, essentielle pour maîtriser les incertitudes systématiques, cruciales à l’ère des hautes statistiques d’Hyper-K. Le travail de thèse proposé porte sur l’analyse des nouvelles données du détecteur proche : conception de nouvelles sélections d’échantillons tenant compte des protons et neutrons de faible impulsion du neutrino, et l'amélioration des modèles d’interaction neutrino–noyau afin d’optimiser la reconstruction de l’énergie. Le second objectif est de transférer ces améliorations à Hyper-K, afin d’orienter les futures analyses d’oscillation. L’étudiant contribuera également à la construction et à la calibration d’Hyper-K (tests d’électronique au CERN, installation au Japon).
Tester le modèle standard dans le secteur du quark top et du boson de Higgs de façon innovante avec plusieurs leptons dans l’expérience ATLAS au LHC
Le LHC collisionne des protons à 13.6 TeV, produisant un volume massif de données pour étudier des processus rares et rechercher de la nouvelle physique. La production d’un boson de Higgs en association avec un quark top unique (tH) dans l’état multi-leptonique (2 leptons de même signe ou 3 leptons chargés) est particulièrement prometteuse, mais complexe à analyser à cause des neutrinos non détectés et des leptons factices. Le processus tH est d’autant plus intéressant que sa très faible section efficace dans le Modèle Standard résulte d’une interférence destructive subtile entre les diagrammes faisant intervenir le couplage du Higgs au boson W et celui du Higgs au quark top. De ce fait, de petites déviations par rapport aux prédictions du Modèle Standard peuvent avoir un impact important sur son taux de production, faisant de tH une sonde sensible de nouvelle physique. La mesure de la section efficace tH reste délicate car les processus ttH et ttW ont des topologies proches et des sections efficaces beaucoup plus grandes, nécessitant une extraction simultanée pour obtenir un résultat fiable et évaluer correctement les corrélations entre signaux. ATLAS a observé un excès modéré de tH avec les données du Run 2 (2.8 s), rendant cruciale l’analyse rapide des données du Run 3 avec une prise en compte explicite de ces corrélations. La thèse exploitera des algorithmes d’intelligence artificielle basés sur des architectures transformers respectant certaines symétries fondamentales pour reconstruire la cinématique des événements et extraire des observables sensibles à la nature CP du couplage Higgs-top. Dans un second temps, une approche globale pourra traiter simultanément les processus ttW, ttZ, ttH, tH et 4 tops, à la recherche de couplages anomaux, y compris ceux violant la symétrie CP, dans le cadre de la théorie effective du Modèle Standard (SMEFT). Cette étude permettra la première mesure complète de tH dans le canal multi-lepton avec les données du Run 3 et ouvrira la voie à une analyse globale des processus rares et des couplages anomaux au LHC dans ce canal.
Méga-analyse cosmologique multi-sonde du relevé DESI: inférence bayésienne standard et au niveau du champ
Les grandes structures de l’Univers (LSS) sont sondées par plusieurs observables : distribution des galaxies, lentillage faible des galaxies et du fond diffus cosmologique (CMB). Chacune permet de tester la gravité à grande échelle et l’énergie noire, mais leur analyse jointe assure le meilleur contrôle des paramètres de nuisance et fournit les contraintes cosmologiques les plus précises.
Le relevé spectroscopique DESI cartographie la distribution 3D de galaxies. À la fin de son relevé nominal de 5 ans cette année, il aura observé 40 millions de galaxies et quasars (dix fois plus que les relevés précédents) sur un tiers du ciel, jusqu’à un décalage spectral de z = 4.2. En combinant ses données avec celles du CMB et des supernovae, la collaboration a mis en évidence une éventuelle déviation de l’énergie noire par rapport à la constante cosmologique.
Pour tirer pleinement parti de ces données, DESI a lancé une "méga-analyse" combinant galaxies, lentillage de galaxies (Euclid, UNIONS, DES, HSC, KIDS) et du CMB (Planck, ACT, SPT), visant à produire les contraintes les plus précises jamais obtenues sur l’énergie noire et la gravité. L’étudiant jouera un rôle clé dans le développement et la mise en oeuvre de cette chaîne d’analyse multi-sonde.
L’analyse standard compresse les observations en spectre de puissance pour l’inférence cosmologique, mais cette approche reste sous-optimale. L’étudiant développera une alternative, dite analyse au niveau du champ, qui consiste à ajuster directement le champ de densité et de lentillage observé, simulé à partir des conditions initiales de l’Univers. Ceci constitue un problème d’inférence bayésienne en très haute dimension, qui sera traité à l’aide d’échantillonneurs récents basés sur le gradient et de bibliothèques GPU avec différentiation automatique. Cette méthode de pointe sera validée en parallèle avec l’approche standard, ouvrant la voie à une exploitation maximale des données DESI.
Désintégration du boson de Higgs en un boson Z et un photon et résolution temporelle du calorimètre électromagnétique de CMS
La thèse se concentre sur la physique du boson de Higgs à travers une de ses désintégrations les plus rares et encore non observées, celle en un boson Z et un photon (canal Zgamma). Cette désintégration complète le portrait du boson de Higgs déssiné jusqu'à présent et implique de manière unique tous les bosons neutres actuellement connus (Higgs, Z, photon), tout en étant sensible à éventuels processus de physique au délà du modèle standard. L'état final de l'analyse consiste en deux leptons de désintégration du boson Z (muons ou électrons, pour cette étude) et un photon. Évènements produits par d'autres processus du modèle standard et contenant deux leptons et un photon (ou des particules mal identifiées pour telles) constituent le bruit de fond de l'analyse. Avec toutes les données recueillies durant le Run2 du LHC (2015-2018) et le Run3 (2021-2026) il est possible de mettre en évidence cette désintégration, c'est-à-dire de l'observer avec une significance statistique de plus que trois déviations standard.
La thèse inclut aussi une partie instrumentale d'optimisation de la résolution en temps du calorimètre électromagnétique de CMS (ECAL). Bien que conçu pour des mesures de précision en énergie, le ECAL a aussi une excellente résolution sur le temps d'arrivée des photons et des électrons (environ 150 ps en collisions, 70 ps en faisceau test, avec conditions idéales). Dans un état final peuplé par des photons provenant de plusieurs dizaines d'évènements superposés (pileup), le temps d'arrivée d'un photon aide à vérifier sa compatibilité avec le vertex de désintégration du boson de Higgs. Cela sera crucial pendant la phase à haute luminosité du LHC (2029-), quand le nombre d'évenements superposé sera environ un facteur 3 plus grand qu'aujourd'hui. Une nouvelle électronique de lecture du ECAL est en train d'être produite et sera installée dans ECAL et CMS pendant la durée de la thèse. Elle permettra d'atteindre une résolution en temps de 30 ps pour photons et électrons de haute énergie. Cette performance a été mésurée en test sur faisceau d'un module du ECAL en conditions idéales (pas de champs magnétique, pas de matériel du trajectographe devant ECAL, pas de pileup): la thèse vise à dévélopper des algorithmes pour maintenir cette performance au sein de CMS.
Le travail de thèse est une continuation de l'analyse Z? en cours dans le groupe CMS du CEA Saclay et de l'analyse des performance en temps du ECAL, où le groupe de Saclay est le leader. Des outils d'analyse simples, robustes et performant, écrits en C++ moderne, basé sur le cadre d'analyse ROOT, permettent de comprendre et contribuer à toutes les étapes d'analyse, à partir de données brutes jusqu'aux résultats publiés. Le groupe CMS de Saclay a des responsabilités de premier plan dans CMS depuis sa construction, incluant une expertise approfondie en physique du Higgs, en reconstruction d'électrons et de photons, en simulation de détecteurs et en techniques d'apprentissage automatique et intelligence artificielle.
Des déplacements réguliers au CERN sont proposés pour présenter les résultas du travail de thèse à la collaboration CMS et pour participer aux tests en laboratoire prévus pour la nouvelle électronique d'ECAL, ainsi qu'à son installation.
Recherche de la production par paire de bosons de Higgs dans le canal multilepton à 13.6 TeV avec le détecteur ATLAS
Dans le Modèle Standard (MS), le champ de Higgs est à l’origine de la brisure de symétrie électrofaible, conférant ainsi leur masse aux bosons W et Z. La découverte du boson de Higgs en 2012 au LHC a permis de confirmer expérimentalement l’existence de ce champ. Malgré des études approfondies, l’auto-couplage du boson de Higgs reste non mesuré, bien qu’il soit essentiel pour comprendre la forme du potentiel du Higgs et la stabilité du vide de l’univers. L’étude de la production par paires de bosons de Higgs (di-Higgs) est la seule manière directe d’accéder à ce paramètre et d’obtenir des informations clés sur la transition de phase électrofaible après le Big Bang. La production de di-Higgs est extrêmement rare (section efficace ~ 40 fb pour des collisions proton-proton avec une énergie de 13,6 TeV). Parmi les états finaux possibles, le canal multilepton est prometteur grâce à sa signature cinématique distinctive, bien que complexe en raison de la diversité des topologies et des bruits de fond. Les avancées récentes en intelligence artificielle, en particulier les architectures de type transformer respectant les symétries physiques, ont amélioré de manière significative la reconstruction d’événements complexes dans des canaux tels que HH?4b ou or HH?bbtt. Appliquer ces techniques au canal multilepton offre un fort potentiel pour améliorer la sensibilité. Ce projet de thèse se concentrera sur la recherche de la production de di-Higgs dans l’état final multilepton avec l’ensemble des données du Run 3 d’ATLAS à 13,6 TeV, en s’appuyant sur les travaux en cours des équipes de l’Irfu sur le canal ttH multilepton afin de développer des méthodes avancées d’analyse et de reconstruction basées sur l’intelligence artificielle. L’objectif du projet est d’approcher la sensibilité du MS sur l’auto-couplage du boson de Higgs.