MINI-BINGO : vers la révélation de la nature du neutrino
BINGO est un projet novateur en physique des neutrinos, conçu pour poser les bases d'une expérience bolométrique à grande échelle dédiée à la recherche de la désintégration double bêta sans neutrinos. L’objectif est de réaliser une expérience avec un indice de bruit de fond extrêmement bas, de l’ordre de 10^-5 coups/(keV·kg·an), tout en atteignant une très haute résolution en énergie dans la région d’intérêt. Ces performances permettront d’explorer la violation du nombre leptonique avec une sensibilité sans précédent.
Le projet repose sur la technologie des bolomètres luminescents, particulièrement efficaces pour rejeter le bruit de fond dominant, à savoir les alphas de surface. Il se concentre sur deux isotopes extrêmement prometteurs, le molybdène-100 (100Mo) et le tellure-130 (130Te), aux propriétés complémentaires, tous deux dignes d’intérêt pour les recherches futures à grande échelle.
BINGO introduira trois innovations majeures dans le domaine bien établi des bolomètres hybrides chaleur-lumière. La première consiste en une augmentation de la sensibilité des détecteurs de lumière grâce à l’amplification Neganov-Luke, permettant un gain d’un ordre de grandeur. La deuxième innovation repose sur un assemblage de détecteurs entièrement repensé, capable de réduire d’au moins un ordre de grandeur la contribution de la radioactivité de surface. Enfin, pour la première fois dans un ensemble de macrobolomètres, un écran actif interne basé sur des scintillateurs BGO ultrapurs, avec lecture bolométrique de la lumière, permettra de supprimer efficacement le bruit de fond gamma externe.
Dans le cadre de cette thèse, l’étudiant(e) participera à l’assemblage et à l’installation du démonstrateur MINI-BINGO dans le cryostat récemment mis en place au Laboratoire Souterrain de Modane. Il ou elle contribuera à la prise de données, à leur analyse et à l’estimation du niveau de rejet du bruit de fond rendu possible par les performances finales du détecteur.
CUPID-Stage I: Detector optimization and analysis in the context of a next generation 0nbb search
The CUPID experiment (CUORE Upgrade with Particle IDentification) aims to achieve unprecedented sensitivity for the detection of neutrinoless double beta decay (0nßß) using an array of 1596 lithium molybdate (Li2MoO4) crystals of ~450 kg mass. If detected this process would be a direct observation new physics in the lepton sector: in example it violates lepton number by 2 units. Dependent on the model it can provide valuable insight into the neutrino mass-scale and possbily to matter generation in the Universe through leptogenesis.
The use of lithium molybdate for this study is particularly advantageous due to their scintillation properties and the high Q-value of the decay process, which lies above most environmental gamma backgrounds. The CUPID experiment employs this material as cryogenic calorimetric detectors, where the heat signal from particle interactions of O (100 microK/MeV) are registered in a sensitive thermistor at a temperature of ~10 mK. Thanks to the high Q-value Mo-100 features a particularly high sensitivity in terms of large phase space factor and nuclear transition matrix element. This will also allow for precision studies and tests of the standard model, through analyses of the shape of another process: the so-called 2 neutrino double beta decay (2nbb), which is a standard model allowed process. However, this rare process (half-life of 7x10^17yr) is not only an interesting particle/nuclear physics target, it is also expected to contribute the most important background in CUPID: the random coincidence of two events adding up in energy to the Q-value of the 0nßß search.
CUPID aims to deploy its new detector array in two phases: An initial detector array with 1/3 of the mass will be deployed by 2030. In the mean time several tower scale measurement and optimization campaigns during the time of this thesis project will allow to analyze and optimize the detector performance of the CUPID detector modules. The further suppression of this so called pile-up background through detector optimization (acting on the sensor attachment of the light detector with a robotic assembly station developed at CEA) and advanced analysis techniques within this thesis will allow to enhance the sensitivity and science reach of CUPID. A further extension of the analysis techniques developed in this thesis to the processing of an array of O(1000) detectors will be tested with the existing TeO2 detecor array of CUORE. In the context of this process the developed analysis techniques will contribute to the final science analyses of CUORE, the leading experiment for 0nßß search with Te-130.
Détection ultrarapide par qubits volants électroniques et de Majorana
Une voie émergente pour l’information quantique consiste à utiliser des charges électroniques volantes, comme les excitations électroniques, en tant que qubits.
Ces qubits volants présentent un avantage majeur : l’interaction de Coulomb intrinsèque, permettant des portes logiques à deux qubits et des applications en détection quantique.
Par rapport aux qubits photoniques, ils offrent donc un levier naturel pour dépasser certaines limitations fondamentales.
Leur principal inconvénient réside dans la décohérence rapide, mais cette difficulté peut être atténuée en opérant à des échelles ultrarapides, de l’ordre de la picoseconde.
Une stratégie supplémentaire consiste à exploiter la protection topologique apportée par les modes de Majorana, quasi-particules non-Abéliennes insensibles aux perturbations locales.
Jusqu’ici, la majorité des travaux se sont concentrés sur des modes 0D localisés (aux extrémités de nanofils supraconducteurs), sans démonstrations expérimentales concluantes.
Notre projet de thèse propose une approche nouvelle, fondée sur les modes de Majorana chiraux 1D, constituant une voie vers des qubits volants protégés topologiquement.
L’ambition est de bâtir une plateforme inédite de calcul et de détection quantiques.
Cette plateforme exploitera le graphène multicouche, où peuvent être combinés effet Hall quantique anormal, supraconductivité et modes de Majorana chiraux.
Dynamique des protéines associées aux filaments nucléoprotéiques Rad51 - Implication dans la régulation de la recombinaison homologue
La recombinaison homologue (RH) est un mécanisme majeur de réparation des cassures double-brin de l'ADN induites par les radiations ionisantes. Une étape clé de la RH est la formation de filaments nucléoprotéique Rad51 sur l'ADN simple brin généré par ces cassures. Nous avons été les premiers a montré chez la levure qu'un contrôle strict de ces filaments est essentiel afin que la RH n'induise pas elle-même de réarrangements chromosomiques (eLife 2018, Cells 2021, Nat. Commun. 2025). Chez l'homme, les homologues fonctionnels des protéines de contrôle sont des suppresseurs de tumeurs. Ainsi, le contrôle de la RH semble être aussi important que le mécanisme de la RH lui-même. Notre projet implique l'utilisation de nouveaux outils moléculaires permettant une percée dans l'étude de ces contrôles. Nous utiliserons une version fonctionnelle fluorescente de la protéine Rad51 développée pour la première fois par nos collaborateurs A. Taddei (Institut Curie), R. Guérois et F. Ochsenbein (I2BC, Joliot, CEA). Cette avancée majeure nous permettra d'observer l'influence des protéines de contrôle sur la réparation de l'ADN par microscopie dans des cellules vivantes. Nous avons également développé des modèles structuraux très précis des complexes de protéines de contrôle en association avec les filaments Rad51. Nous recourrons à une approche multidisciplinaire basée sur la génétique, la biologie moléculaire, la microscopie, la biochimie et la structure des protéines, pour comprendre la fonction des régulateurs de la formation des filaments Rad51. La description de l’organisation de ces protéines avec les filaments Rad51 nous permettra de développer de nouvelles approches thérapeutiques.
Synthèse et études des propriétés optiques de nanoparticules de graphène
Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).
Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier: des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Nous nous intéresserons particulièrement à des familles de nanoparticules allongées dans le but d'étudier comment la taille peut permettre d'observer et contrôler des processus multiexcitoniques dans ces matériaux. Ce projet sera développé en collaboration avec des physiciens, le/la candidat(e) devra donc avoir un gout prononcé pour le travail pluridisciplinaire.
Thérapie médicamenteuse pour la prise en charge des syndromes hématopoïétique et gastro-intestinal radio-induits
La technologie nucléaire est largement utilisée dans l'industrie, l'armée et la médecine (diagnostic, radiothérapie ou conditionnement pour transplantation). Les circonstances dans lesquelles se produit une irradiation à haute dose peuvent entraîner un nombre considérable de blessures et de décès en absence d'intervention thérapeutique. Il peut s'agir de terrorisme, d'accidents par dysfonctionnement de réacteurs nucléaires ou d'accidents de radiothérapie avec surdosage de rayonnements ionisants (RI). Il existe également des cas médicaux d'irradiation à forte dose dans le but de conditionner le patient à la transplantation pour traiter certaines maladies (l’aplasie médullaire acquise, la leucémie aiguë myéloblastique (LAM) ou l'anémie aplastique héréditaire).
L'exposition à des niveaux élevés de rayonnement peut rapidement entraîner un syndrome d'irradiation aiguë (SIA) affectant principalement les tissus hématologiques (sang, moelle osseuse) et gastro-intestinaux dans les heures, les jours et les semaines qui suivent.
Le syndrome hématopoïétique (SH) est une composante majeure du SIA. Il se développe après une irradiation corporelle totale (TBI) à des doses > 1 Gy et se caractérise par une destruction partielle ou totale des cellules souches de la moelle osseuse et de son environnement. La prise en charge thérapeutique du SH repose sur des traitements médicaux par des facteurs de croissance pour stimuler une hématopoïèse résiduelle, mais ceux-ci peuvent s'avérer inefficaces en cas d'atteinte sévère de la moelle osseuse. La greffe de cellules souches hématopoïétiques est alors le meilleur traitement, mais elle est invasive, pas toujours réalisable faute de donneurs et son taux de réussite reste extrêmement faible en raison notamment d'effets secondaires sévères (risque de maladie du greffon contre l'hôte).
Le syndrome gastro-intestinal (SGI) quant à lui se développe après une dose > 10 Gy (corps entier ou localisée). Il se caractérise par une perte de poids, des diarrhées et une susceptibilité accrue à développer une infection bactérienne conduisant à une septicémie. Le décès survient alors dans les 5 à 12 jours post-irradiation. La prise en charge actuelle repose uniquement sur des traitements symptomatiques (antibiotiques, anti-diarrhéiques, antiémétiques).
Il est donc essentiel de développer de nouvelles méthodes thérapeutiques pour traiter les patients fortement irradiés le plus rapidement possible après l'exposition aux radiations et avec un minimum d'effets secondaires.
Dans ce projet, nous proposons de développer, par le biais de collaborations industrielles et cliniques, de nouvelles thérapies médicamenteuses par l’administration de molécules spécifiques à tester afin d'améliorer la récupération hématopoïétique et/ou intestinale après irradiation.
Optimisation de détecteurs de rayonnement gamma pour l’imagerie médicale. Tomographie par émission de positrons temps de vol
Introduction
Les technologies innovantes d’imagerie fonctionnelles contribuent à la priorité sur les Médecines du Futur du CEA. La tomographie par émission de positrons (TEP) est une technique d'imagerie médicale nucléaire largement utilisée en oncologie et en neurobiologie.
La désintégration du traceur radioactif émet des positrons, qui s'annihilent en deux photons de 511 keV. Ces photons sont détectées en coïncidence et utilisées pour reconstituer la distribution de l'activité du traceur dans le corps du patient.
Nous vous proposons de contribuer au développement d’une technologie ambitieuse et brevetée : ClearMind. Le premier prototype est à nos laboratoires. Ce détecteur de photons gamma utilise un scintillant cristal monolithique de haute densité et grand Z, dans lequel sont produits des photons Cherenkov et de scintillation. Ces photons optiques sont convertis en électrons par une couche photo-électrique et multipliés dans une galette à microcanaux. Les signaux électriques induits sont amplifiés par des amplificateurs gigahertz et numérisés par les modules d'acquisition rapide SAMPIC. La face opposée du cristal sera équipée d'une matrice de photo-détecteur en silicium (SiPM).
Aujourd’hui nous disposons d’un premier prototype. Nous travaillons a en construire deux supplémentaires.
Le travail proposé
Vous travaillerez dans un laboratoire d’instrumentation avancé dans un environnement de physique des particules.
Il s’agira d’abord d’optimiser les « composants » des détecteurs ClearMind, pour parvenir à des performances nominales. Nous travaillerons sur les cristaux scintillants, les interfaces optiques, les couches photo-électriques et les photo-détecteurs rapides associés (MCP-PMT et SiPM), les électroniques de lectures.
Il s’agira ensuite de caractériser les performances des détecteurs prototypes sur nos bancs de mesure en développement continu. Les données acquises seront interprétées au moyen de logiciels d’analyse « maison » écris en langage C++ et/ou Python.
Il s’agira enfin de confronter les propriétés mesurées de nos détecteurs à des simulations dédiées (Monté-Carlo sur logiciels Geant4/Gate).
Un effort particulier sera con-sacré au développement de cristaux scintillants ultra-rapides dans le contexte d’une collaboration européenne.
Supervision
Le candidat retenu travaillera sous la supervision conjointe de Dominique Yvon et Viatcheslav Sharyy DRF/ IRFU & BIOMAPS. Le groupe CaLIPSO de l'IRFU & BIOMAPS est spécialisé dans le développement et la caractérisation de détecteurs TEP innovant. Dans le cadre du projet, nous avons une étroite collaboration avec le l’IJCLabs d’Orsay, qui développe nos électroniques de lecture et d’acquisition, le CEA/DM2S qui travaille notamment sur des algorithmes d'IA de confiance, le CPPM de Marseille, qui évalue nos détecteurs dans des conditions d’acquisition d’imagerie TEP et l’UMR BIOMAPS (CEA/SHFJ), travaillant sur les algorithmes de calculs d’image.
Exigences
Des connaissances en physique de l’interaction particules-matière, de la radioactivité et des principes des détecteurs de particules sont indispensables. Un goût prononcé pour l’instrumentation et le travail de laboratoire est recommandé. Il est important d'avoir des compétences de base en programmation, par exemple C++, logiciel de simulation physique Gate/Geant4.
Compétences acquises
Bonne connaissance des technologies de pointe des détecteurs de particules et des tomographes à émission de positrons. Principes et techniques de simulation de l'interaction des particules-matière et les systèmes de détection. Analyse de données complexes.
Contact
Dominique Yvon, dominique.yvon@cea.fr
Viatcheslav Sharyy, viatcheslav.sharyy@cea.fr