Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique
Depuis les années 1950, le recours aux plastiques pétrosourcés a créé un monde moderne consumériste basé sur l’utilisation de produits jetables. La production mondiale considérable de déchets plastiques a presque doublé en 20 ans, atteignant aujourd’hui les 468 millions de tonnes par an. Ces déchets plastiques, non biodégradables, engendrent de nombreuses pollutions environnementales (perturbations de la faune et de la flore, pollutions des eaux et des sols, etc.).. A peine 9% de ces déchets ont été recyclés, le reste étant brulé ou stocké en décharges. Les problèmes sanitaires, climatiques et sociétaux inhérents à cette économie linéaire imposent de créer une circularité de ces matières en développant des voies de recyclages efficaces et robustes. Alors que les voies actuelles de recyclage reposent en majorité sur des procédés mécaniques et se restreignent à des gisements particuliers de déchets (e.g. les bouteilles d’eau plastiques), le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. De tels procédés chimiques permettent de récupérer la matière carbonée des plastiques pour en régénérer de nouveaux.
Dans cet objectif de circularité de la matière, le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, boîtiers disjoncteurs, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux, comme les alcools et l’acide formique seront développés. L’utilisation du dihydrogène, réducteur industriel, sera également considérée. Dans le but d’optimiser ces systèmes catalytiques, nous chercherons à comprendre leur mode de fonctionnement et les mécanismes impliqués.
Impact du clustering de sources sur les statistiques d'ordre supérieur des données weak lensing d'Euclid
Dans les années à venir, la mission Euclid fournira des mesures des formes et des positions de milliards de galaxies avec une précision sans précédent. Lorsque la lumière des galaxies d’arrière-plan traverse l’Univers, elle est déviée par la gravité des structures cosmiques, déformant les formes apparentes des galaxies. Cet effet, connu sous le nom de lentille faible, est la sonde cosmologique la plus puissante de la prochaine décennie, et il peut répondre à certaines des plus grandes questions de la cosmologie : que sont la matière noire et l’énergie noire, et comment se forment les structures cosmiques ?
L’approche standard de l’analyse de la lentille faible consiste à ajuster les statistiques à deux points des données, telles que la fonction de corrélation des formes de galaxies observées. Cependant, cette compression des données n’est pas optimale et rejette de grandes quantités d’informations. Cela a conduit au développement de plusieurs approches basées sur des statistiques d’ordre élevé, telles que les troisièmes moments, les harmoniques de phase en ondelettes et les analyses au niveau du champ. Ces techniques fournissent des contraintes plus précises sur les paramètres du modèle cosmologique (Ajani et al. 2023). Cependant, avec leur précision croissante, ces méthodes deviennent sensibles aux effets systématiques qui étaient négligeables dans les analyses statistiques standard à deux points.
L'une de ces systématiques est le regroupement des sources, qui fait référence à la distribution non uniforme des galaxies observées dans les relevés de lentilles faibles. Plutôt que d'être uniformément distribuées, les galaxies observées suivent la densité de matière sous-jacente. Ce regroupement provoque une corrélation entre le signal de lentille et la densité du nombre de galaxies, conduisant à deux effets : (1) il module la distribution effective du décalage vers le rouge des galaxies, et (2) il corrèle le bruit de forme des galaxies avec le signal de lentille. Bien que cet effet soit négligeable pour les statistiques à deux points (Krause et al. 2021, Linke et al. 2024), il a un impact significatif sur les résultats des statistiques d'ordre élevé (Gatti et al. 2023). Par conséquent, une modélisation précise du regroupement des sources est essentielle pour appliquer ces nouvelles techniques aux données de lentilles faibles d'Euclid.
Dans ce projet, nous développerons un cadre d'inférence pour modéliser le regroupement de sources et évaluer son impact sur les contraintes cosmologiques à partir de statistiques d'ordre élevé. Les objectifs du projet sont :
1. Développer un cadre d'inférence qui remplit les champs de matière noire avec des galaxies, en modélisant avec précision la distribution non uniforme des galaxies d'arrière-plan dans les relevés de lentilles faibles.
2. Quantifier l'impact du regroupement de sources sur les paramètres cosmologiques à partir de transformées en ondelettes et d'analyses au niveau du champ.
3. Incorporer le regroupement de sources dans des émulateurs de la distribution de matière pour permettre une modélisation précise des données dans les analyses statistiques d'ordre élevé.
Grâce à ces développements, ce projet améliorera la précision des analyses cosmologiques et le réalisme de la modélisation des données, rendant possibles des analyses statistiques d'ordre élevé pour les données Euclid.
Diagnostic précoce du sepsis à l’aide d’une biopuce à base de capteurs GMR
Le sepsis, réponse immunitaire extrême et dérégulée face à une infection qui se propage alors dans le sang, peut entraîner un dysfonctionnement d’organes pouvant conduire à la mort du patient (11 millions de morts dans le monde chaque année). La biopuce brevetée à base de capteurs GMR (Giant MagnetoResistance) que nous avons développée présente un réel potentiel pour une détection précoce des agents pathogènes impliqués dans le sepsis ou des biomarqueurs de la maladie, présents en très faible quantité dans le sang, sans étape de culture. L’approche innovante que nous proposons est transversale car basée sur l’utilisation de nanoparticules magnétiques (NPM), fonctionnalisées par des anticorps monoclonaux produits au laboratoire LERI, dirigés contre les objets biologiques cibles (cellules bactéries levures etc..) qui sont détectées un à un dynamiquement et de manière simultanée par les capteurs GMR disposés de part et d’autre d’un canal microfluidique dans lequel ils circulent. La preuve de concept de cette biopuce a été obtenue sur un modèle de cellules myélomateuses murines. Nous avons pu atteindre une sensibilité et une spécificité avec ce modèle qui rend notre technique très compétitive par rapport aux tests Point-of-Care existants. Il est cependant nécessaire de valider ces résultats sur des agents pathogènes.
Au cours de la thèse, deux objectifs seront définis. Dans la continuité de la thèse actuelle, Le premier objectif de l’étudiant au LNO sera d’adapter la biopuce (capteurs, microfluidique et traitement des signaux) afin qu’elle soit sensible et rapide pour la détection de bactéries et de levures impliqués dans le sepsis dans des échantillons sanguins. Au LERI, il devra optimiser le marquage magnétique des bactéries et des levures dans cette matrice clinique au moyen de NPM commerciales fonctionnalisées par un ou plusieurs anticorps dirigés contre la cible. Cette étape de la thèse se déroulera en étroite collaboration avec le Service de Bactériologie et Hygiène de l’hôpital Béclère (également membre de l’IHU) qui préconisera et fournira des souches de bactéries et levures pertinentes à détecter, ainsi que des échantillons cliniques. Une des biopuces GMR sera installée à l'Hôpital Béclère pour des mesures en conditions réelles. Le second objectif consistera à essayer de quantifier la diminution de l’expression monocytaire des molécules mHLA-DR qui est un indicateur de l’état d’immunosuppression du sepsis associé à un risque infectieux et une mortalité majorés.
Porte à deux bits quantiques à base d'hétérostructures de Germanium
Nous travaillons sur les qubits de spin en germanium, un matériau prometteur et polyvalent pour concevoir des bits quantiques de spin. Dans ces « hétérostructures », les trous sont hébergés dans une couche de germanium prise en sandwich entre deux couches de silicium/germanium. Ces trous présentent une mobilité très élevée et, contrairement aux spins électroniques qui ne sont sensibles qu'aux champs magnétiques, les spins des trous peuvent être manipulés par un champ électrique, c'est-à-dire par des tensions sur une grille. Ce contrôle entièrement électrique présente un inconvénient : les spins deviennent sensibles au bruit électrique et donc au bruit de charge dans les dispositifs. Les hétérostructures de germanium sont dotées de grilles métalliques qui écrantent en grande partie le bruit de charge provenant des défauts qu'elles recouvrent; cependant, dans les régions non couvertes par les grilles, les charges non écrantées sont responsables du bruit de charge qui limite le temps de cohérence.
Nous sommes en train d'acquérir un équipement de salle blanche unique combinant le dépôt et la gravure de couches atomiques, qui permettra de développer des structures originales où les grilles pénètrent profondément dans l'hétérostructure, afin de contourner l'effet de ces charges solitaires sur la surface dans le cas des grilles en surface. Grâce à cette nouvelle approche, la définition et la manipulation des points quantiques seront extrêmement simplifiées, et nous prévoyons d'obtenir des dispositifs de portes à deux qubits dans cette thèse.
Magnons topologiques dans les matériaux quantiques
La topologie est devenue un paradigme essentiel en matière condensée, permettant de classer les phases de la matière selon des propriétés invariantes sous des déformations continues. Les premières recherches dans ce domaine se sont essentiellement concentrées sur les structures de bandes électroniques, conduisant par exemple à la découverte des « isolants topologiques ». Cependant, ces concepts topologiques ne sont pas restreints seulement aux électrons (fermions) et ainsi, l'application de tels concepts aux bosons, en particulier les magnons, suscite un intérêt croissant. Les magnons, qui sont des excitations collectives dans les matériaux magnétiques, illustrent comment la topologie influence la dynamique magnétique et affecte le transport de chaleur et de spin. Des analogues d'isolants topologiques et de semi-métaux apparaissent dans leurs structures de bandes de magnons. Les magnons offrent ainsi une plateforme pour étudier l'interaction entre symétries magnétiques et topologie, examiner l'effet des interactions sur les bandes topologiques, et générer des courants de spin protégés aux interfaces. La recherche de matériaux contenant des magnons topologiques est donc cruciale, surtout pour les applications en magnonique, qui exploitent les ondes de spin pour le stockage et le traitement rapide des données.
Ce projet de thèse se consacre à explorer ces aspects topologiques dans des matériaux quantiques candidats à l’aide de techniques de diffusion de neutrons et de rayons X dans les grandes infrastructures de recherche (ILL, ESRF, SOLEIL), pour analyser la structure de bande des magnons à la recherche de caractéristiques topologiques, comme les points de Dirac ou de Weyl. Les résultats expérimentaux seront soutenus par des calculs théoriques des bandes magnoniques intégrant des concepts topologiques.
ROLE DE L'UNFOLDED PROTEIN RESPONSE DANS LE MAINTIEN DU STOCK DE CELLULES SOUCHES SPERMATOGONIALES CHEZ LA SOURIS ADULTE
Des conditions défavorables (stress oxydatif, déséquilibre des taux de lipides, de glucose ou de calcium, ou inflammation) provoquent l'accumulation de protéines anormales, induisant un stress du RE. L'Unfolded Protein Response (UPR) est activée pour restaurer l'homéostasie cellulaire, mais un stress sévère ou chronique entraîne la mort cellulaire par apoptose. Une dérégulation des voies de signalisation UPR favorise plusieurs maladies humaines (diabète, maladie de Parkinson, maladie d'Alzheimer, maladies du foie, cancer...), mais on ne sait rien de son rôle dans la stérilité de l'homme adulte.
La production de spermatozoïdes repose sur les cellules souches spermatogoniales (CSS) dont le stock est maintenu par autorenouvellement tout au long de la vie. Nous avons montré que l'activité clonogénique des CSS murines en culture est drastiquement réduite par induction de la différenciation cellulaire après induction d'un stress du RE. Un criblage HTS a identifié 2 des 3 branches UPR comme étant impliquées dans l'activité clonogénique des CSS de souris. Le rôle de ces 2 voies UPR sera étudié plus en détail afin de préciser si elles sont impliquées dans l'induction de mort cellulaire ou dans l'équilibre autorenouvellement/ différenciation. Dans les cultures de CSS de souris traitées, la mort cellulaire, le cycle cellulaire, l'induction de la différenciation et la synergie entre voies UPR seront analysés. L'effet de chaque voie étant médié par des facteurs transcriptionnels, les gènes cibles seront caractérisés par RNAseq afin d'identifier les réseaux géniques controlés par l'UPR impliqués dans le devenir des CSS. Pour la voie la plus pertinente, une étude in vivo permettra de confirmer le rôle du facteur UPR dans la fonction et le maintien des CSS.
Détecter les premiers amas de galaxies de l'Univers dans les cartes du fond diffus cosmologique
Les amas de galaxies, situés aux nœuds de la toile cosmique, sont les plus grandes structures de l’Univers liées par la gravitation. Leur nombre et leur distribution spatiale sont très sensibles aux paramètres cosmologiques, comme la densité de matière dans l’Univers. Les amas constituent ainsi une sonde cosmologique performante. Elle a fait ses preuves ces dernières années (sondages Planck, South Pole Telescope, XXL, etc.) et promet de grandes avancées les prochaines années (sondages Euclid, Observatoire Vera Rubin, Simons Observatory, CMB-S4, etc.).
Le pouvoir cosmologique des amas de galaxies s’accroît avec la taille de l’intervalle de décalage vers le rouge (redshift z) couvert par le catalogue. Planck a détecté les amas les plus massifs de l’Univers dans 0<z<1 alors que SPT et ACT, plus sensibles mais couvrant moins de ciel, ont déjà détecté des dizaines d’amas entre z=1 et z=1.5 et quelques amas entre z=1.5 et z=2. La prochaine génération d’instruments (Simons Observatory à partir de 2025 et CMB-S4 à partir de 2034) permettra de détecter de façon routinière les amas dans 1<z<2 et observera les premiers amas formés dans l’Univers dans 2<z<3.
Seules les expériences étudiant le fond diffus cosmologique pourront observer le gaz chaud dans ces premiers amas à 2<z<3, grâce à l’effet SZ, du nom de ses deux découvreurs Sunyaev et Zel’dovich. Cet effet, dû aux électrons de grande énergie du gaz des amas, provoque une petite perturbation du spectre en fréquence du fond diffus cosmologique, ce qui le rend détectable. Mais le gaz n’est pas la seule composante émettrice dans les amas : des galaxies à l’intérieur des amas émettent aussi en radio ou en infrarouge ce qui contamine le signal SZ. Cette contamination est faible à z<1 mais augmente drastiquement avec le redshift. On s’attend à ce que ces émissions radio et infrarouge soient du même ordre de grandeur que le signal SZ dans l’intervalle 2<z<3.
Il faut donc essayer de comprendre et modéliser l’émission du gaz des amas en fonction du redshift, mais aussi celle des galaxies radio et infrarouge qu’ils contiennent pour pouvoir préparer la détection des premiers amas de galaxies de l’Univers.
L’Irfu/DPhP a développé les premiers outils de détection d’amas de galaxies dans les données du fond diffus cosmologique dans les années 2000. Ces outils ont été utilisés avec succès sur les données Planck et sur les données sol, comme celles de l’expérience SPT. Ils sont efficaces pour détecter les amas de galaxies dont l’émission est dominée par le gaz mais leur performance est inconnue dans le cas où l‘émission par les galaxies radios et infrarouges est importante.
Le travail de thèse consistera dans un premier temps à étudier et modéliser les émissions radio et infrarouge des galaxies des amas détectés dans les données du fond diffus cosmologique (Planck, SPT et ACT) en fonction du redshift.
Dans un second temps, on quantifiera l’impact de de ces émissions sur les outils de détection d’amas existants, dans le domaine de redshift actuellement sondé (0<z<2) puis dans le domaine de redshift futur (2<z<3).
Enfin, à partir de notre connaissance acquise sur ces émissions radio et infrarouge des galaxies dans les amas, on développera un nouvel outil d’extraction d’amas destiné aux amas à grand redshift (2<z<3) pour maximiser l’efficacité de détection et la maîtrise des effets de sélection, i.e. le nombre d’amas détecté par rapport à au nombre total sous-jacent.
Le doctorant rejoindra les collaborations Simons Observatory et CMB-S4.
Imagerie des champs de déformations dans les semi-conducteurs: du matériau au dispositif
Ce sujet traite de la visualisation et de la quantification des champs de déformation dans les matériaux semi-conducteurs, par des techniques utilisant le rayonnement synchrotron. Le contrôle de la déformation est fondamental pour optimiser les propriétés de transport électronique, mécaniques et thermiques. Dans une approche duale, nous combinerons la détermination du tenseur local de déformation déviatorique en balayant l'échantillon sous un nano faisceau polychromatique (µLaue) et une imagerie d'un champ de vu donné (microscopie aux rayons X en champ sombre, DFXM).
Des recherches originales s’intéresseront à améliorer l’analyse : (1) de la précision et de la vitesse de détermination quantitative des champs de déformation, (2) des distributions des gradients de déformation, et (3) du champ de déformation dynamique dans les matériaux piézoélectriques par des mesures stroboscopiques. Pour illustrer ces points, trois cas scientifiques correspondant à des matériaux microélectroniques pertinents et de complexité croissante seront étudiés :
1.Champs de déformation statiques entourant des contacts métalliques dans le Si, tels que les vias à travers le silicium (TSV) à haute densité dans la technologie CMOS.
2.Gradients de déformation dans des structures hétéroépitaxiales complexes Ge/GeSn avec des variations de composition le long de la direction de croissance.
3.Études de déformation dynamique de résonateurs acoustiques LiNbO3 en volume avec une fréquence de résonance dans la plage des MHz.
La validation de cette approche conceptuelle permettra une avancée significative dans le domaine de la microélectronique et l'ingénierie de déformation.
Modèle d’organoïdes cérébraux complexes reproduisant la niche tumorale du glioblastome et sa composante immunitaire pour le développement d’une médecine personnalisée
Le glioblastome, responsable de 3 500 décès annuels en France, est une tumeur cérébrale extrêmement agressive et résistante aux traitements actuels. Les essais cliniques d’immunothérapie n’ont montré que des effets transitoires, soulignant l'importance de comprendre les mécanismes de résistance et de développer des stratégies thérapeutiques mieux ciblées.
Nous avons développé un modèle innovant d’invasion de cellules souches de gliome dans des organoïdes cérébraux immunocompétents et vascularisés, dérivés de cellules souches pluripotentes induites (iPSC) (Raguin et coll. Soumis). Ce modèle reproduit fidèlement la niche tumorale du glioblastome, incluant la cooptation vasculaire, la reprogrammation de la microglie en macrophages associés aux tumeurs et la récurrence tumorale après radiothérapie.
L’objectif de ce projet de thèse est de dériver un modèle d’organoïdes cérébraux universel pour le transfert aux cellules de gliomes issues de patients et des lymphocytes afin d’optimiser l’approche d’immunothérapie (cellules CAR-T).
Il s’agira de créer un modèle universel d’organoïdes cérébraux humains immunitairement "silencieux" en supprimant l’expression du système HLA classes I/II dans les iPSC (CRISPR/CAS9 pour les gènes ß2M et CIITA). Par ailleurs, il s’agira d’élucider les mécanismes d’immunosuppression induits par l’irradiation, tels que la reprogrammation des cellules microgliales/macrophages et l’implication de la sénescence. Différentes approches visant à rendre le microenvironnement tumoral plus propice à l’immunothérapie seront explorées, comme en activant la voie de l'interféron de type I par modification génétique ou via des agonistes de la voie cGAS/STING. Par la suite, l'utilisation de cellules CAR-T ciblant un antigène surexprimé par les cellules de glioblastome (CD276/B7-H3) sera étudiée. Ce modèle pourra être utilisé en médecine personnalisée, en co-cultivant les cellules tumorales, les monocytes et les cellules CAR-T des patients.
Ce projet offre des perspectives innovantes pour le traitement personnalisé du glioblastome via l'immunothérapie et pourrait représenter une avancée majeure dans cette approche thérapeutique.
Valorisation du biogaz par conversion du CO2 avec une biorafinerie avancée
L'utilisation de sources d'énergie renouvelables est un défi majeur pour les décennies à venir. L'une des façons de répondre à la demande croissante d'énergie est de valoriser les déchets. Parmi les différentes stratégies actuellement développées, la valorisation de biogaz issu des stations de méthanisation apparaît comme une approche prometteuse. En effet, le biogaz est composé majoritairement de méthane, mais aussi de CO2 (environ 40%) non utilisé. Le projet proposé ici est le reformage du biogaz en utilisant une source de biohydrogène renouvelable pour convertir le CO2 restant en CH4 pur. Nous proposons de mettre en place une bioraffinerie avancée autonome qui combinera la photoproduction d'hydrogène à partir de déchets de l'industrie laitière réalisée par la bactérie Rhodobacter capsulatus combiné avec le CO2 présent dans le biogaz dans une unité de biométhanation contenant une culture de Methanococcus maripaludis, une archée méthanogène capable de produire du CH4 à partir de CO2 et de H2 selon la réaction de Sabatier. Le but est de produire du méthane de façon non énergivore et respectueuse de l'environnement.